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Basics 
 
In abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all 
the commutators of the group. 
 
For elements g and h of a group G, one of the two expressions of the commutator of g and h is [g,h]: = ghg'h'. 
The commutator [g,h] is equal to the identity element e if and only if gh = hg, that is, if and only if g and h 
commute. In general, gh = [g,h]hg. 
 
However, the product of two or more commutators need not generally be a commutator. 
 
An alternating group is the group of even permutations of a finite set. The alternating group on the set {1,...,n} is 
called the alternating group of degree n, or the alternating group on n letters and denoted by An. 
 
 
A Property of Alternating Groups 
 
It has been proved by G. A. Miller that the alternating group on n letters, n >= 5, consists entirely of commutators. 
This was rediscovered over half a century later by O. Ore. 
 
They demonstrated that any permutation σ of An can be written as the product of  2 n-cycles ρ1, ρ2: 

 
σ = ρ1·ρ2 

 
Because permutation ρ2 is an n-cycle, as ρ1 and ρ1' are, and because permutations which show the same cycle 
structure are conjugates, there exist a permutation τ such that permutation ρ2 is the conjugate of ρ1' by τ: 
 

ρ2 = τ·ρ1'·τ' 
 

So that permutation σ can now be written as a commutator: 
 

σ = ρ1·τ·ρ1'·τ' = [ρ1, τ] 
 
E. Bertram showed later that permutations ρ1, ρ2 need not be n-cycles, but l-cycles, where the necessary and 
sufficient condition on l is: 
 

(3n/4) ≤ l ≤ n 
 

http://www.mementoslangues.fr/�
http://en.wikipedia.org/wiki/Commutator_subgroup�
http://en.wikipedia.org/wiki/Alternating_group�
http://www.ams.org/journals/bull/1899-06-03/S0002-9904-1899-00683-9/S0002-9904-1899-00683-9.pdf�
http://www.sciencedirect.com/science/article/pii/0097316572901021�
http://faculty.evansville.edu/rm43/publications/commutatorsurvey.pdf�
http://arxiv.org/PS_cache/math/pdf/0303/0303036v2.pdf�


 

Commutator Subgroup   2/10   http://www.mementoslangues.fr/ Cube Theory 

Commutator Example 
 
The 24 facelets of a given orbit of corner-centers of a 7x7x7 cube can be uniquely identified from a set of 24 
letters A…X. We can then define alternating group A24 as the group of all even permutations of these letters. 
 
Applied to n = 24, the general condition on l gives: 
 

18 ≤ l ≤ 24 
 
We choose l = 23, ρ1 = [NR NL, NU R NB ND']* and  τ = (R NF' L' NF R')*, so that both ρ1 and ρ2 are 23-cycles. 
 
Notice that algorithm [NR NL, NU R NB ND'] is a 'pure' 23-cycle, ie. it will not move or rotate any facelet that 
doesn’t belong to the selected orbit of corner-centers. 
 
By using CubeTwister, it can be shown that the composition of ρ1 and ρ2 gives a 5-cycle, which can be written 
either as the product: 
 

σ = ρ1·ρ2 = [NR NL, NU R NB ND']  (R NF' L' NF R') [NR NL, NU R NB ND']' (R NF' L' NF R')'   (34 moves) 
 
or as the commutator: 
 

σ = [ρ1, τ] = [[NR NL, NU R NB ND'], (R NF' L' NF R')]    (34 moves) 
 
Factorizing permutations into 2 cycles of length l is generally not very efficient in terms of moves, though. We can 
search for a shorter algorithm using Super Cube Solver and compare solutions: 
 

σ = (CKEFM) = NF SR ND NF2 ND' NF2 R' NF2 ND NF2 ND' L NF' (13 moves) 
 

Orbit Solver – Corner-Centers 5-Cycle 
http://www.randelshofer.ch/rubik/virtualcubes/vcube7/7x_scripts/7x_super_cube_solver/index_enVE.html 

 
 

σ = (CKEFM) = NF SR ND NF2 ND' NF2 R' NF2 ND NF2 ND' L NF' (13 moves) 
 
*SSE Notation 
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Cube Twister – ρ1 

 
ρ1 = [NR NL, NU R NB ND'] 

 
 
 

Cube Twister – ρ2 

 
ρ2 = τ·ρ1'·τ' = (R NF' L' NF R') [NR NL, NU R NB ND']' (R NF' L' NF R')' 
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Cube Twister – σ 

 
σ = ρ1·ρ2 = [NR NL, NU R NB ND']  (R NF' L' NF R') [NR NL, NU R NB ND']' (R NF' L' NF R')' 

σ = [ρ1, τ] = [[NR NL, NU R NB ND'], (R NF' L' NF R')] 
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Semi-Commutators 
 
A commutator is generally defined as: [A, B] = AB·B'A', where A and B are sequences of moves, representing 
permutations of pieces on a cube. 
 
It has been proved that An, the alternating group on n items, n >= 5, consists entirely of commutators, so that any 
permutation of An can be represented by a commutator or by a product of commutators, where the two 
representations are strictly equivalent, at least from a theoretical standpoint. 
 
It may, however, be of interest to find products of commutators that give short sequences of moves, at least for 
products of a few commutators. For this to happen, there must be move cancellation between consecutive 
commutators. If a maximum number of moves could be cancelled out this way, a commutator-like expression 
may eventually be obtained, which may be called a semi-commutator – a better name is still to be found, btw. 
 
The structure of such a semi-commutator depends on a number of variables and on the direction of enclosing 
brackets. Notice that this is more of a personal notation than something to be widely used… 
 
Examples below are given for 3 and 4 variables and can be easily extended to a higher number of variables. 
 
3 variables 
Expressions of semi-commutators 
[X, YZ] = X·YZ·X'·Z'Y' (commutator) 
[X, YZ[ = X·YZ·X'·Y'Z' (semi-commutator) 
]XY, Z] = XY·Z·X'Y'·Z' (semi-commutator) 
]XY, Z] = [X, YZ[ 
 
Semi-commutators as products of 2 commutators (move cancellations shown in red) 
[X, YZ[ = [X, YZ] [Y, Z] = X·YZ·X'·Z'Y'·Y·Z·Y'·Z' = X·YZ·X'·Z'Y' 
]XY, Z] = [X, Y] [YX, Z] = X·Y·X'·Y'·YX·Z·X'Y'·Z' = XY·Z·X'Y'·Z' 
 
Inverses of semi-commutators 
[X, YZ[' = ]ZY, X] 
]XY, Z]' = [Z, YX] 
 
4 variables 
Expressions of semi-commutators 
[XY, ZP] = XY·ZP·Y'X'·P'Z' (commutator) 
[XY, ZP[ = XY·ZP·Y'X'·Z'P' (semi-commutator) 
]XY, ZP] = XY·ZP·X'Y'·P'Z' (semi-commutator) 
]XY, ZP[ = XY·ZP·X'Y'·Z'P' (semi-commutator) 
 
Semi-commutators as products of 2 or 3 commutators (move cancellations shown in red) 
[XY, ZP[ = [XY, ZP] [Z, P] = XY·ZP·Y'X'·P'Z'·Z·P·Z'P' = XY·ZP·Y'X'·Z'P' 
]XY, ZP] = [X, Y] [YX, ZP] = X·Y·X'·Y'·YX·ZP·X'Y'·P'Z' = XY·ZP·X'Y'·P'Z' 
]XY, ZP[ = [X, Y] [YX, ZP] [Z, P] = X·Y·X'·Y'·YX·ZP·X'Y'·P'Z'·Z·P·Z'·P' = XY·ZP·X'Y'·Z'P' 
 
Inverses of semi-commutators 
[XY, ZP[' = ]PZ, XY] 
]XY, ZP]' = [ZP, YX[ 
]XY, ZP[' = ]PZ, YX[ 
 
Semi-commutators may be included in a brute-force search, when searching for algorithms by sweeping 
variables that take values in a set of basic moves, until swept permutation and goal permutation match, like in 
this example, where 8 variables are used:  
 
[XYZPQ, AEG] = XYZPQ·AEG·Q'P'Z'Y'X'·G'E'A' (commutator) 
[XYZPQ, AEG[ = XYZPQ·AEG·Q'P'Z'Y'X'·A'E'G' (semi-commutator) 
]XYZPQ, AEG] = XYZPQ·AEG·X'Y'Z'P'Q'·G'E'A' (semi-commutator) 
]XYZPQ, AEG[ = XYZPQ·AEG·X'Y'Z'P'Q'·A'E'G' (semi-commutator) 
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Semi-Commutator Example 
 
A short 5-cycle of edge-centers has been obtained from the following semi-commutator: 

 
]R NU, N3B R' NU R N3B'[ = R NU N3B R' NU R N3B' R' NU' N3B' R NU' R' N3B (14 moves) 

 
We can search for a shorter algorithm using Super Cube Solver and compare solutions: 
 

[N3B', R NU TR' F NR] = N3B' R NU TR' F NR N3B NR' F' TR NU' R' (12 moves) 
 
Notice that move TR is the combination of moves R and NR, that is: TR = R NR, thus giving a shorter solution. 
 

SuperCube Solver – Edge-Centers 5-Cycle 
http://www.randelshofer.ch/rubik/virtualcubes/vcube7/7x_scripts/7x_super_cube_solver/index_enVE.html 

 
Scramble Algorithm 

]R NU, N3B R' NU R N3B'[ = R NU N3B R' NU R N3B' R' NU' N3B' R NU' R' N3B 
Solution Algorithm 

[N3B', R NU TR' F NR] = N3B' R NU TR' F NR N3B NR' F' TR NU' R' 
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Symmetric Commutators 
 
Commutators (or semi-commutators) show structures that are symmetric in nature. If we consider, for example, 
the following commutator [A, B] of 5 variables [X Y, Z P Q], written as: 
 

[A, B] = [X Y, Z P Q] = X Y·Z P Q·Y' X'·Q' P' Z' = (X Y)·(Z P Q)·(X Y)'·(Z P Q)' = A·B·A'·B' 
 
we can see that the second half of this expression is simply the composition of the inverses of A and B. 
 
Knowing that a cube has a set of 48 symmetries, we can further expand the concept of this 'plain' commutator to 
the 'symmetric' commutator, where the inverses of A and B are replaced with As and Bs, being the inverses of 
their respectives transformations by any of the 48 cube symmetries, that is: 
 

[A, B]s = [X Y, Z P Q]s = X Y·Z P Q·Ys' Xs'·Qs' Ps' Zs' = (X Y)·(Z P Q)·(Xs Ys)'·(Zs Ps Qs)' = A·B·As'·Bs' 
 
In this notation, subscript 's' indicates that symmetry has been applied to the the second half of the expression. 
 
A plain commutator is then just a particular case of a symmetric commutator, for which the applied symmetry is 
simply the 'Identity' symetry: 
 

F→F 
R→R 
U→U 
L→L 
D→D 
B→B 

 
The concept of symmetric commutors can even be further expanded to symmetric semi-commutators as follows: 
 

]X Y, Z P Q[s = X Y·Z P Q·Xs' Ys'·Zs' Ps' Qs' 
]X Y, Z P Q]s = X Y·Z P Q·Xs' Ys'·Qs' Ps' Zs' 
[X Y, Z P Q]s = X Y·Z P Q·Ys' Xs'·Qs' Ps' Zs' 

 
It is already known that plain commutators work well in cases where only a few cube pieces are permuted. They 
are generally of less practical use for solving cube positions with many permuted pieces, though. But, if a 
scrambled cube shows a symmetric pattern, chances are good that a symmetric commutator could be found that 
may eventually solve it. 
 
 
Symmetric Commutator Examples 
 
Symmetric commutators may be used instead of plain commutators in difficult cases, or for finding alternate 
(symmetric) solution algorithms to already known ones. 
 
As an example, we will search for an alternate algorithm to the hardest distance-20 position of a 3x3x3 cube, 
using symmetric commutators. 
 
According to the 'God's Number is 20' paper, the following position was the hardest to their programs to solve: 

 
F U' F2 D' B U R' F' L D' R' U' L U B' D2 R' F U2 D2 

 
The algorithm itself doesn’t show any obvious symmetry, so we first have to search for symmetric cube positions, 
if any. 
 
The position shows a symmetry about the F – B axis, so that a half-turn cube rotation (by move CF2) gives 
another position which is equivalent to the initial one.  
 
Using Cube Explorer 5.00s, all optimal solutions to this algorithm, plus its 19 shifted versions, have been found. 
From the list, a 18-move algorithm was extracted that presents a symmetric commutator structure: 
 

R' L·D2 U' F' L D U2 F'·R' L·F D2 U' R' F D U2 
This algorithm can be rewritten as: 

http://www.mementoslangues.fr/�
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[R' L, D2 U' F' L D U2 F']s 

 
where symmetry CF2 has been applied to the second half, as follows: 
 

F→F 
R→L 
U→D 
L→R 
D→U 
B→B 

 
Using Algorithm Finder Lite, this 18-move algorithm has been shifted, conjugated and transformed by symmetry 
to give the following symmetric solutions to the initial (unsymmetric) algorithm, where SR = R L': 
 

B D' L2 R F D' L' R2 F SU F' L2 R U F' L' R2 U B' 
F L' U2 D F L' U' D2 F SR F' U2 D R F' U' D2 R F' 
F D' R2 L B D' R' L2 B SU B' R2 L U B' R' L2 U F' 

B R' U2 D B R' U' D2 B SR' B' U2 D L B' U' D2 L B' 
F' U R2 L' B' U R L2 B' SU B R2 L' D' B R L2 D' F 
B' R D2 U' B' R D U2 B' SR B D2 U' L' B D U2 L' B 
B' U L2 R' F' U L R2 F' SU F L2 R' D' F L R2 D' B 
F' L D2 U' F' L D U2 F' SR' F D2 U' R' F D U2 R' F 

 
All solutions shown are 20-move algorithms in HTM and 19-move algorithms in STM. 
 

Symmetric Commutator – Example 1 
3x3x3 Cube – Hardest Distance-20 Position 

  
Unsymmetric Algorithm Symmetric Algorithm (s = CF2) 

F U' F2 D' B U R' F' L D' R' U' L U B' D2 R' F U2 D2 F' L D2 U' F' L D U2 F' SR' F D2 U' R' F D U2 R' F 
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Symmetric commutators may also be used for permuting a few cube pieces, although plain commutators will 
generally provide shorter solutions, as shown below for the case of corner-center 5-cycle. 
 

Symmetric Commutators Commutators 
[NR, NU' NR NU R[s (10 moves) NF' D NF ND' NF' D' NF' ND NF2 (9 moves) 

[NR, ND' NR' ND D2[s (10 moves) U D NR' ND' NR U' D' NR ND NR' (10 moves) 
Symmetric Commutator – Example 2 

7x7x7 Cube – Permutation (BIOLV) – Corner-Center 5-Cycle 

  
[NR, NU' NR NU R[s (s = CR') 

Original Position Equivalent Position 
NR NU' NR NU R NR' NF NR' NF' R' CR' NR NU' NR NU R NR' NF NR' NF' R' 

7x7x7 Cube – Permutation (HRMKT) – Corner-Center 5-Cycle 

  
[NR, ND' NR' ND D2[s (s = CU') 

Original Position Equivalent Position 
NR ND' NR' ND D2 NB' ND NB ND' D2 CU' NR ND' NR' ND D2 NB' ND NB ND' D2 
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Generalized Commutators 
 
Any permutation of An can be represented by a commutator or by a product of commutators, where the two 
representations are strictly equivalent, at least from a theoretical standpoint. 
 
It may, however, be of interest to find products of commutators that give short sequences of moves, at least for 
products of a few commutators. For this to happen, there must be move cancellation between some consecutive 
commutators. In the case where there is move cancellation between all consecutive commutators in the product, 
we get a special case which may be considered as a generalized commutator, written as: 
 
[X, Y] = X Y X' Y' 
[X, Y, Z] = [X, Y] [Y, Z] = X Y X' Y' Y Z Y' Z' = X Y X' Z Y' Z' 
[X, Y, Z, P] = [X, Y] [Y, Z] [Z, P] = X Y X' Y' Y Z Y' Z' Z P Z' P' = X Y X' Z Y' P Z' P' 
[X, Y, Z, P, Q] = [X, Y] [Y, Z] [Z, P] [P, Q] = X Y X' Y' Y Z Y' Z' Z P Z' P' P Q P' Q' = X Y X' Z Y' P Z' Q P Q' 
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