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Foreword 
 
Document 
 
This document is divided into four main parts that can be read independently. 
 
In Part I, basic information is given on cube theory, parity, cycles and orbits. Examples are given to show how to 
use Orbit Cube textures and n-cycles to permute pieces on a 7x7x7 cubes, using pre-computed algorithms. 
 
Details about how to compute an efficient algorithm database, using templates, are given in Part II. Algorithms 
have been generated to permute pieces as 3-cycles, pairs of 2-cycles, twist and swap corners and fix edge and 
corner parities, anywhere on any big cube of any order. 
 
Part III is more about database indexing and shows how to compute a fully scalable indexing system. 
 
Examples of  n-cycles synthesized with the Algorithm Picker computer program are shown in Part IV. 
 
And finally, a scalable cube numbering system is described in the Annex. 
 
Links 
 
Since Verdes first released their V-Cube 6 and V-Cube 7, considerable interest has grown in the cubing 
community in techniques and methods to solve big cubes. Many useful information about these cubes can be 
found in the following sites: 
 

Big Cubes – Useful Links 
http://www.randelshofer.ch/ http://www.stefan-pochmann.de/ 

http://cubefreak.net/ http://www.jaapsch.net/puzzles/ 
http://www.speedcubing.com/chris/ http://www.bigcubes.com/ 
http://www.speedsolving.com/wiki/ http://www.cubestation.co.uk/ 

http://michael-gottlieb.blogspot.com/ http://www.v-cubes.com/ 
Forums 

http://twistypuzzles.com/ http://www.speedsolving.com/ 
Download CubeTwister 

http://www.randelshofer.ch/cubetwister/ 
 

Contents 
 

Click a link below 
Part I Cube Theory 
Part II Algorithm Templates 
Part III Algorithm DataBase 
Part IV Algorithm Picker 
Annex Cube Numbering System 

 
To know more… 
 
For users of Microsoft Excel 2007, the AlgorithmPicker7 VBA code can be freely downloaded by clicking the link: 
 

http://www.mementoslangues.fr/CubeDesign/AlgorithmFinder/AlgorithmPicker7.xlsm 
 
For further reading on texture design for virtual cubes, click the link below and select 'CubeDesign': 
 

http://www.mementoslangues.fr/ 
 
For any suggestion or comment about this document, please contact me at: 
 

ml (at) mementoslangues.com 
 

I hope you will enjoy reading the document and practicing with virtual Orbit Cubes! 
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Introduction 
 
This document is about the design of a scalable algorithm database, applicable to any NxNxN cube or supercube, 
and how it can be used together with a specially designed texture. 
 
A fully scalable database has been computed for a 7x7x7 cube, from which algorithms for cubes of any order can 
be inferred. 
 
Features 
 
Algorithm databases have been generated for: 
 

1- 3-cycles of corners 
2- 3-cycles of edges 
3- 3-cycles of centers 
4- pairs of 2-cycles of corners (corner twists) 
5- 2-cycles of corners (corner swaps – corner parity fix) 
6- pairs of 2-cycles of midges (midge flips) 
7- 2-cycles of edges (edge flips – edge parity fix) 
8- true-center twists 

 
Orbit Cube Textures 
 
By using one of the two textures below on a 6x6x6 or 7x7x7 cube, it becomes easier to see to which orbit a 
sticker belongs to. Each sticker is marked with an unique identifier tag consisting of a letter from 'A' to 'X' 
together with an orbit number, which varies from '00' up to '12'. This feature is also useful to highlight n-cycles on 
a big cube. For example, a 3-cycle of corners on face F would simply show up as cycle (D → A → B → D) in 
orbit '03'. 
 

Orbit Cube Textures 

  
6x6x6 Cube Texture 7x7x7 Cube Texture 

 
Algorithm Picker 
 
Given an orbit and an n-cycle, the algorithm that will move the n pieces in the orbit can be looked up using an 
Algorithm Picker. This is simply the combination of a piece of software and a UserForm, which is used to query 
the algorithm database.  

http://www.mementoslangues.fr/�


 

Orbit Cube   4/68   http://www.mementoslangues.fr/  Cube Solver 

Further Capabilities 
 
Although not directly linked to the Orbit Cube design, I thought it may have been of interest to see how computer 
program Algorithm Finder can be used to display fairly complex pretty patterns (see FractalCubeDesign), 
because Algorithm Finder and Algorithm Picker actually share the same N-scalable 'kernel' of subroutines. 
 

T-Square Fractal (Order 6) – 126x126x126 Cube – AlgorithmFinder126 

 

Hilbert Curves, First to Third orders – 31x31x31 Cube – AlgorithmFinder31 

 

 

http://www.mementoslangues.fr/�
http://www.mementoslangues.fr/CubeDesign/3xCubes/FractalCubeDesign.pdf�
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Part I 
 

Cube Theory 
 

(From Jaap’s Puzzle Page) 
 
Permutations 
 
Suppose you have a list of ordered numbers such as (1,2,3,4,5,6,7,8). A permutation of these numbers is 
simply another list of the same numbers but ordered differently, for example (4,2,6,1,3,5,8,7). Every number on 
the list must be used exactly once. 
 
At first sight this is not related to the cube, but suppose you write down the numbers of the eight corner pieces of 
the cube in a list. Any face move on the cube then permutes corner pieces, and therefore corresponds to a new 
list with the same numbers of corner pieces but in a different order. Any face move (or move sequence) is 
therefore a permutation of corner pieces. Of course, the same can be said of edge or center pieces. 
 
By examining what permutations can do, we can therefore examine how pieces of the cube do move. The 
numbers in our permutation list which are not really important. What is important is how they have moved in the 
list. A permutation usually uses numbers, but these numbers can represent any items, for example moving 
pieces of the cube, or any other objects that can be rearranged. A permutation therefore embodies only the 
movement of items. 
 
There are many different ways to write down a permutation. A common way is to write the original list of numbers 
on one line, and the new list directly on another line just below. For the list of numbers above, we get: 
 

1 2 3 4 5 6 7 8 
4 2 6 1 3 5 8 7 

 
To make this more visual, we can make a line diagram by drawing straight lines between numbers of the two lists 
to show exactly how each item on the list moves. 

 

 
 
In this example lines cross 8 times, so we can say that 8 is the diagram crossing number. 
 
An important aspect of permutations is that they can be combined. On the cube for example, one sequence of 
moves can be followed by another. In other words, the pieces are rearranged in one way, and starting from the 
new position they can be rearranged in another way, and so on. Suppose we combine the permutation above 
with the following permutation, where the crossing number is 15: 

 

 
 
Only the movement is important, so even though this second permutation is also written using numbers from 1 to 
8, when we combine the two permutations, we only look at the lines, i.e. at what movement is depicted by the 
permutation. To combine them, we draw the line diagrams one below the other and follow the lines: 

http://www.mementoslangues.fr/�
http://www.jaapsch.net/puzzles/theory.htm�
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By straightening the lines we get: 

 

 
 
Let’s now look at crossing numbers. The first two permutations have crossing numbers 8 and 15. The combined 
drawing therefore has 15+8=23 crosses but when the lines are straightened, we get a crossing number of 11. If 
you think of the lines as loose threads, and that you physically untangle them, you will see that each time you 
uncross two threads, the number of crossings always decreases by 2. When you untangle all the threads, the 
number of crossings then decreases by a multiple of 2. Therefore, although the final permutation crossing 
number is not simply the sum of the two, it will have the same parity as that sum (i.e. will also be even or also be 
odd). 
 
Permutation Parity 
 
Let’s call a permutation odd if its crossing number is odd, and even if its crossing number is even. This is the 
parity of the permutation. 
 
It is now easy to see that, when permutations are combined, their parities follow the same rules as numbers: 
 

odd + odd = even 
 

even + even = even 
 

odd + even = odd 
 

even + odd = odd 
 
On a Rubik's Cube, taking into account corners and edges, a single quarter turn of a face is an even permutation. 
To see this, number corners of the face 1-4 and edges 5-8. A quarter turn is then represented by the permutation 
(2,3,4,1,6,7,8,5) which has crossing number 6 if you draw it. 
 
Combining even permutations will always give another even permutation, so only even permutations of the 
pieces of the Rubik's Cube are possible. This shows that it is impossible to swap only two pieces (edges or 
corners) without moving anything else. Note that this holds only for a 3x3x3 cube. Nothing has been said so far 
about higher order cubes. It can be shown actually that 2 edges can be swapped on a 4x4x4 cube, without 
disturbing any other piece on the cube. 
 
Disjoint Cycle Notation 
 
A different but very useful notation for permutations is disjoint cycle notation. In this notation, the first 
permutation we used becomes (1 4) (3 5 6) (7 8). This means that 1 moves to the position that 4 was in, and 4 
moves to the position that 1 was in. Piece 3 moves to the position that 5 was in, 5 moves to where 6 was, and 6 
moves to where 3 used to be. Pieces 7 and 8 swap places just like pieces 1 and 4 do. Piece 2 does not move 
because it is not mentioned, although you could state so explicitly by including the 2 like this (1 4) (2)(3 5 6) (7 8). 
 

http://www.mementoslangues.fr/�
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Each parenthesized part of this is called a cycle: (1 4) and (7 8) are 2-cycles, and (3 5 6) is a 3-cycle. These 
cycles are called disjoint because they use different numbers, and so act on different pieces. 
 
It is easy to see that the parity of a 2-cycle is odd, and that of a 3-cycle is even. 
 
The combined permutation (1 4) (3 5 6) (7 8) is therefore even because odd + even + odd = even. In general the 
parity of an n-cycle will be the parity of n-1 for any integer number n. 
 
Order of a permutation 
 
The order of a permutation is the number of times it has to be performed before the pieces are back to their 
initial positions. This is where cycle notation is very useful. A 2-cycle is a single swap, so if this is performed 
twice then the pieces are back in place. A 2-cycle therefore has order 2. Similarly, a 3-cycle will have order 3, 
and any n-cycle will have order n. 
 
Now let’s consider a permutation like (1 4) (3 5 6) (7 8) which is composed of several cycles. If it is performed 
twice, or in fact any even number of times then the 2-cycles will disappear. If it is performed three times or any 
multiple of three, then the 3-cycle will disappear. If it is performed 6 times, which is a multiple of both 2 and 3 
then all the cycles disappear and this permutation therefore has order 6. 
 
In general, the order of a permutation is the Least Common Multiple (LCM) of the lengths of the disjoint cycles. 
 
Let’s see how this applies to the cube. Consider the move sequence F R. If we look at how this moves pieces, 
we see that the UFL corner moves to position RUB, corner RUB moves to position RBD, and so on. In cycle 
notation this permutation is written as follows: 
 

(UFL RUB RBD RDF DLF) (UF RU RB RD RF DF LF) 
 
This is a 5-cycle of corners and a 7-cycle of edges. Its order is therefore 35, which means that if you constantly 
repeat the move sequence F R on the cube, you will have to do it 35 times before the pieces come back to their 
original positions. If you try this out on a solved cube you will see that although this is true, the cube is not 
restored because some corners are twisted. We have only looked at the location of the pieces, and not at their 
orientation. 
 
Groups 
 
The collection of all possible permutations of n items form a group. A group is simply a collection of things 
(usually called elements of the group) which satisfy various conditions, which I will list below. We use these 
conditions implicitly whenever we use permutations, so it is best to state them explicitly now. 
 
Any two elements of a group can be combined, and this results in another element of the group. As you have 
seen, two permutations can be combined by performing one after the other, and this will always result in a 
permutation. If P and Q are permutations, then P Q will be the permutation resulting from performing first P and 
then Q. Combining two elements of a group is usually called multiplication of the two elements. 
 
There is an identity, i.e. an element I in the group such that for any element P in the group we have: 
 

P I = I P = P 
 
In a permutation group the element I is simply the permutation that does not move anything. 
 
Every element has an inverse, i.e. if P is an element of the group then there is an element Q in the group such 
that: 
 

P Q = Q P = I 
 
If you mirror the line diagram of a permutation vertically, you get the line diagram of its inverse. A permutation in 
cycle notation can be inverted just by writing each cycle in reverse. The inverse of permutation P is denoted by 
P-1, or by P'. On puzzles, you can do the inverse of a move sequence just by undoing the moves in reverse order, 
i.e. taking back the moves you did. 
 
The multiplication is associative, i.e. if P, Q and R are elements of the group, then: 
 

http://www.mementoslangues.fr/�
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(P Q) R = P (Q R) 
 
For permutations this is obviously true. 
 
If a group is commutative, we have: 
 

P Q = Q P for any P, Q in the group 
 

A commutative group is called an Abelian group. Puzzles that belong to an Abelian group are much simpler to 
solve because the order in which the moves are performed does not matter. But permutation groups occurring in 
most puzzles are generally not Abelian. 
 
All possible movements of the pieces on a Rubik's cube also form a group, the Cube Group. At first sight this is 
not a simple permutation group because the orientation of pieces matter, but you could consider it as a 
permutation group of 48 moving facelets instead of 20 moving pieces. 
 
On a pedantic note, it is technically incorrect to say that the positions of the Rubik's cube form a group. A 
position is reached from the solved cube state by moving pieces in some way, and it is those movements that 
form the group because movements can be combined. On the standard Rubik's Cube this is not a very important 
distinction, but on other puzzles like the 4x4x4 cube it is. Thist puzzle has center pieces which look the same, 
and so there are positions which are indistinguishable from each other. Thus different permutations seem to 
correspond to the same position, or permutations which seem to do nothing in one position will change things in 
another. The permutations still form a group, but the positions do not (unless you mark the centre pieces so they 
can be distinguished). 
 
Conjugation 
 
If P and Q are elements of a group, then the conjugate of Q by P is the element P Q P'. This is one of the most 
useful concepts for solving a puzzle like the cube. Let’s illustrate this with an example on the Rubik's Cube.  
 
Suppose that you know that the move sequence Q = R' L F2 R L' U2 cycles three edges around, viz. (UB,UF,DF) 
but that you want to cycle 3 other edges of the cube, for example (UR,UF,UL). We would like to know how to 
cycle them if they where placed at positions UB, UF and DF, so we simply put them there, for example by doing 
the sequence P = F2 U. This sequence moves other pieces as well, but that does not matter. So after we put 
them in position with P, cycled them with Q, we put everything back by doing P'. The relevant edges have been 
cycled as we wanted, and any other pieces that were moved by P are put back by P'. 
 
Therefore P Q P' = F2 U R' L F2 R L' U F2 cycles just edges (UR,UF,UL). 
 
As you can see from this example, if you have a sequence that performs a certain task on particular pieces of the 
puzzle, conjugation will allow you to perform the same task on any other similar pieces of the puzzle instead. So, 
if you can flip two edge pieces then you can flip any two of them, or if you can twist two corners then you can 
twist any two of them, and so on. 
 
Commutation 
 
Conjugation allowed you to apply a specific sequence more generally, but you still need to find that specific 
sequence to begin with. That is where commutation is useful. 
 
If P and Q are elements of a group, then [P, Q] = P Q P' Q' is called a commutator. 
 
If P and Q commute (for example if they are disjoint, like R and L moves on the cube) then:  
 

P Q P' Q' = Q P P' Q' = Q I Q' = Q Q'= I 
 
A commutation can be seen as an indication of whether P and Q commute, and by how much. If P and Q are 
nearly disjoint, then the commutator will move fairly little, and therefore often performs a useful function when 
solving a puzzle. 
 
The simplest commutators on a cube use single face moves for P and Q, for example P = F and Q = R' give: 

 
[F, R'] = F R' F' R 
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This cycles three edges (FU,FR,UR), and two pairs of corners (UFL,BRU) and (URF,RDF). Note that corner UFL 
moves to BRU, which in turn moves to LUF. This is twisted anti-clockwise compared to the original position FLU, 
so if we perform this cycle twice, these two pieces will be back to their original positions but will both be twisted 
anti- clockwise. The other corner 2-cycle of F R' F' R twists clockwise. We could adapt cycle notation to show this 
as follows: 

 
F R' F' R = (UFL, BRU)- (URF, RDF)+ (FU, FR, UR) 

 
Doing this twice, we get: 

 
(F R' F' R)2 = (UFL)- (UBR)- (URF)+ (DFR)+ (FU, UR, FR) 

 
Doing this three times, we get: 

 
(F R' F' R)3 = (UFL, UBR) (URF, DFR) 

 
Theoretically these moves and their conjugates are enough to perform any even permutation of corners, and any 
even permutation of edges. Any single quarter turn of a face is an odd permutation of corners plus an odd 
permutation of edges, so just using what we have so far we could position all pieces of the Cube. 
 
What remains is just to orient them. 
 
Commutation works best when P and Q are nearly disjoint. 
 
Therefore lets choose Q to be a turn of the U face, and P so that it affects only a single piece in the U face. An 
extremely useful choice is the monotwist P = R' D R F D F'. This twists one corner (URF)+ and does not affect 
anything else in the U layer. The bottom half of the cube is messed up but that does not matter. We now have 
the following very useful sequences: 
 

[P, U] = P U P' U' = R' D R F D F' U F D' F' R' D' R U' = (URF)+ (UBR)- 
 

[P, U2] = P U2 P' U2 = R' D R F D F' U2 F D' F' R' D' R U2 = (URF)+ (ULB)- 
 

[P, U'] = P U' P' U = R' D R F D F' U' F D' F' R' D' R U = (URF)+ (UFL)- 
 
You can now twist any two corners on the cube. 
 
Other good choices for P are the monoflip P = F U D' L2 U2 D2 R U = (FU)+, which will allow you to flip any 
edge on the cube, and P = R' D R which gives you a simple 3-cycle of corners. 
 
It is also productive to let Q be a move of a middle slice, for example MR. If you look squarely at the R face of the 
cube, MR is a clockwise quarter turn of the middle slice just behind the R layer. 
 
If we let P = F2, which is a monoswap of edges (DF,UF) in the middle slice, then we get a 3-cycle of edges: 
 

[F2, MR] = F2 MR F2 MR' = (DB,DF,UF) 
 
and the 2-H pattern: 
 

[F2, MR2] = F2 MR2 F2 MR2 = (DF,UF)(DB,UB) 
 
If P = MF , then we get the 6-spot pattern: 
 

[MF, MR] = MF MR MF' MR' 
 
whereas P = MF2 gives the 4-spot pattern: 
 

[MF2, MR] = MF2 MR MF2 MR' 
 
Another good choice is P = F U' R F' U, a neat monoflip of edges (FU)+: 
 

[F U' R F' U, MR] = F U' R F' U MR U' F R' U F' MR' 
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Size of the group 
 
You may have noticed that when you use a commutator for twisting corners, you will always twist two corners in 
opposite directions. Commutators can also only flip pairs of edges. It turns out that this is enough to solve the 
cube because it is impossible for a single piece to be turned. 
 
Every corner piece has one facelet that belongs in the U or the D face. For a corner which has been moved 
anywhere on the cube, lets define its twist as follows: 
 

1- Its twist is 0 if its U/D facelet is in the U or D face. 
2- Its twist is +1 if the piece has been turned clockwise from the 0 twist orientation. 
3- Its twist is -1 if the piece has been turned anti-clockwise from the 0 twist orientation. 

 
Twisting a corner clockwise will increase its twist by one. We have to work modulo 3 however, because 3 twists 
is the same as no twist at all, and so a twist value of +2 is really only a twist of +2-3 = -1. Similarly, an anti-
clockwise twist decreases the twist by one modulo 3 (i.e. a twist of -2 is just a twist of +1). 
 
If you turn the U or the D face, the twists of corner pieces do not change. If you turn any other face a quarter turn, 
then the twist of two of the corner pieces increases, and the twist of the other two corners decreases. In any case 
the total twist of all the corners does not change modulo 3. In the starting position the cube has a total twist of 0, 
and this therefore remains 0 however mixed up the cube gets. This shows that it is impossible to twist a single 
corner in isolation, and that if you twist only two corners then they must go in opposite directions. 
 
A very similar method can be used for the edges. Define an edge flip as 0 or 1 (modulo 2) and show that the total 
flip remains equal to 0, whatever move is performed, which means that no edge can be flipped in isolation. This 
holds for the Rubik’s Cube only: it can be shown that an isolated dedge can be flipped on a 4x4x4 cube. 
 
Another way is by looking at the permutations of edge facelets. A quarter turn of a face is an even permutation of 
edge facelets (two 4-cycles), so that any move sequence will give only even permutations of edge facelets. 
 
A single edge flip is an odd permutation of edge facelets on a Rubik’s Cube and hence not possible without 
taking the cube apart. 
 
In all we have now seen three restrictions on the possible layout of pieces on a Rubik's Cube: 
 

1- The total corner twist must be eqaul to zero modulo 3 
2- The total edge flip must be equal to zero modulo 2 
3- The parity of pieces permutation must be even 

 
If you were to take the cube apart and randomly put it back together again, there would be a 1 in 3 chance of 
having the right corner twist (since all three possible twist values are equally likely). Similarly there is a 1 in 2 
chance to get the total edge flip correct, and a 1 in 2 chance of getting the right permutation parity. Putting this 
together, we find there is a 1 in 12 chance that a randomly assembled cube is solvable. 
 

http://www.mementoslangues.fr/�
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Sticker Orbits 
 
If a sticker orbit is defined as any complete set of stickers that can move into each other’s position, then the total 
number of stickers per orbit is 24 for corner, edges and non-true centers (true centers are only found on odd-
order cubes). 
 
Note that there are 3 stickers per corner piece, 2 stickers per edge piece and 1 sticker per center piece. 
 
The total number of sticker orbits for any NxNxN cube, excluding true centers stickers, can be calculated by 
noting that there are: 
 

1- 1 corner orbit 
2- Ne = N – 2 edge orbits 
3- Nc = (p – 1)2 center orbits, where p = N/2 is an integer number, (even-order cubes only) 
4- Nc = (p – 1).p center orbits, where p = (N – 1)/2 is an integer number, (odd-order cubes only 

 
This shows that the number of center orbits is always odd for odd-order cubes and may be even or odd for even-
order cubes, depending on N. 
 
For even-order cubes, the number of center orbits Nc is odd if and only if cube order NEven-Order Cube is given by: 
 

NEven-Order Cube = 2.(AnyOddNumber + 1) 
 
This means that the number of center orbits is odd for the following cube orders: 
 

NEven-Order Cube = 4, 8, 12, 16, 20, 24,… 
 
Conversely, the number of center orbits is even for cube orders from the following list: 
 

NEven-Order Cube = 6, 10, 14, 18, 22, 26,… 
 
From this, the total number of sticker orbits has been calculated for a number of NxNxN cubes and is shown in 
the table below: 
 

Total Number of Sticker Orbits 
 Odd-Order Cubes: (N2 – 1)/4 Even-Order Cubes: N2/4 

Cube Order N 3 4 5 6 7 8 9 10 11 20 
Corner Orbit 1 1 1 1 1 1 1 1 1 1 
Edge Orbits 1 2 3 4 5 6 7 8 9 18 

Center Orbits 0 1 2 4 6 9 12 16 20 81 
Total 2 4 6 9 12 16 20 25 30 100 

 
From this table, we can infer a *very* crude approximation of the average number of moves that would be 
needed to optimally solve any NxNxN cube, under the following assumptions: 
 

1- There is a single 3-cycle of stickers in each orbit, on average 
2- Each 3-cycle is 10 moves long, on average 

 
This would give an average number of moves of 20 to solve a 3x3x3 cube, 40 for the 4x4x4, 60 for the 5x5x5, 90 
for the 6x6x6 and 120 for the 7x7x7. 
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Sticker Permutation Vector 
 
There is a total of 6.N2 stickers on any NxNxN cube. If these are numbered from 0 to 6.N2 – 1, then the cube 
state can be represented by a permutation vector of size 6.N2. In the initial state, the permutation vector is an 
ordered set of  6.N2 integer numbers: 
 

Sticker permutation vector (initial state) = (0, 1, 2,…, 6.N2 – 1) 
 
After a number of outer layer and/or inner slice turns, the new permutation vector is no longer an ordered set of 
numbers because some have moved to new locations. This can be shown on an example. Let’s take the case of 
a single 3-cycle of centers on a 7x7x7 cube, where sticker 8 has moved to location 159, sticker 159 to location 
12 and sticker 12 to location 8 (8 → 159 → 12 → 8): 
 

Sticker permutation vector (initial state) = (0, 1, 2,…, 8,…, 12,…, 159,…, 293) 
 

Sticker permutation vector (new state) = (0, 1, 2,…, 12,…, 159,…, 8,…, 293) 
 

algorithm (3-cycle of centers) = F' NL NF' NL' F NL NF NL' = [F', NL NF' NL'] 
 

The two permutation vectors differ only by 3 numbers. All other stickers stay in their initial locations. 
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Cycle Decomposition 
 

(For more on cycles and permutations, see: Permutation) 
 
Decomposing Cycles 
 
Any permutation of stickers in a given orbit can be decomposed into a number of disjoint 2- and 3-cycles. Some 
examples of cycle decomposition are shown below for cycles of length 4 to 12: 
 
Length 4: (1 2 3 4) = (1 2 3) (1 4) = (1 2) (1 3 4) 
 
Length 5: (1 2 3 4 5) = (1 2 3) (1 4 5) 
 
Length 6: (1 2 3 4 5 6) = (1 2 3) (1 4 5 6) = (1 2 3) (1 4 5) (1 6) 
 
Length 7: (1 2 3 4 5 6 7) = (1 2 3) (1 4 5 6 7) = (1 2 3) (1 4 5) (1 6 7) 
 
Length 8: (1 2 3 4 5 6 7 8) = (1 2 3) (1 4 5 6 7 8) = (1 2 3) (1 4 5) (1 6 7 8) = (1 2 3) (1 4 5) (1 6 7) (1 8) 
 
Length 9: (1 2 3 4 5 6 7 8 9) = (1 2 3) (1 4 5 6 7 8 9) = (1 2 3) (1 4 5) (1 6 7 8 9) = (1 2 3) (1 4 5) (1 6 7) (1 8 9) 
 
Length 10: (1 2 3 4 5 6 7 8 9 10) = (1 2 3) (1 4 5 6 7 8 9 10) = (1 2 3) (1 4 5) (1 6 7 8 9 10) = 
(1 2 3) (1 4 5) (1 6 7) (1 8 9 10) = (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10) 
 
Length 11: (1 2 3 4 5 6 7 8 9 10 11) = (1 2 3) (1 4 5 6 7 8 9 10 11) = (1 2 3) (1 4 5) (1 6 7 8 9 10 11) = 
(1 2 3) (1 4 5) (1 6 7) (1 8 9 10 11) = (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11) 
 
Length 12: (1 2 3 4 5 6 7 8 9 10 11 12) = (1 2 3) (1 4 5 6 7 8 9 10 11 12) = (1 2 3) (1 4 5) (1 6 7 8 9 10 11 12) = 
(1 2 3) (1 4 5) (1 6 7) (1 8 9 10 11 12) = (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11 12) = 
(1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11) (1 12) 
 
Note that there is more than one way to decompose any n-cycle into disjoint 3- or 2-cycles. 
 
Recomposing Cycles 
 
Any pair of 2-cycles of stickers in a given orbit can be recomposed into a pair of 3-cycles. Here is how to proceed: 
 

1- Select a first 2-cycle and a second 2-cycle. 
2- Select the first number of the first 2-cycle and the last number of the second 2-cycle. 
3- Insert the last number at the end of the first 2-cycle and the first number at the beginning of the second 2-

cycle. 
4- Continue until all pairs of 2-cycles have been transformed into pairs of 3-cycles. 

 
This shows that pairs of 2-cycles can be recomposed into pairs of 3-cycles. This means also that any orbit state 
can be reached using only 3-cycles, provided that the permutation leading to this state if of even parity. 
 
Examples below show how cycles can be decomposed/recomposed at will. Note again that there is no unique 
solution. 
 
Even length cycles 
 
Two 2-cycles (= Two 3-cycles) 
 

(1 2) (3 4) = (1 2 4) (1 3 4) 
 
Two 4-cycles (= Four 3-cycles) 
 

(1 2 3 4) (5 6 7 8) = (1 2 3) (1 4) (5 6) (5 7 8) = (1 2 3) (1 4 6) (1 5 6) (5 7 8) 
 
Two 6-cycles (= Six 3-cycles) 
 

(1 2 3 4 5 6) (7 8 9 10 11 12) = (1 2 3) (1 4 5) (1 6 8) (1 7 8) (7 9 10) (7 11 12) 
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Two 8-cycles (= Eight 3-cycles) 
 
(1 2 3 4 5 6 7 8) (9 10 11 12 13 14 15 16) = (1 2 3) (1 4 5) (1 6 7) (1 8 10) (1 9 10) (9 11 12) (9 13 14) (9 15 16) 

 
Two 10-cycles (= Ten 3-cycles) 
 

(1 2 3 4 5 6 7 8 9 10) (11 12 13 14 15 16 17 18 19 20) = 
(1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 12) (1 11 12) (11 13 14) (11 15 16) (11 17 18) (11 19 20) 

 
Two 12-cycles (= Twelve 3-cycles) 
 

(1 2 3 4 5 6 7 8 9 10 11 12) (13 14 15 16 17 18 19 20 21 22 23 24) = 
 (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11) (1 12 14) (1 13 14) (13 15 16) (13 17 18) (13 19 20) (13 21 22) (13 23 24) 

 
Four 2-cycles (= Four 3-cycles) 
 

(1 2) (3 4) (5 6) (7 8) = (1 2 4) (1 3 4) (5 6 8) (5 7 8) 
 
Four 4-cycles (= Eight 3-cycles) 
 

(1 2 3 4) (5 6 7 8) (9 10 11 12) (13 14 15 16) = 
(1 2 3) (1 4 6) (1 5 6) (5 7 8) (9 10 11) (9 12 14) (9 13 14) (13 15 16) 

 
Four 6-cycles (= Twelve 3-cycles) 
 

(1 2 3 4 5 6) (7 8 9 10 11 12) (13 14 15 16 17 18) (19 20 21 22 23 24) = 
 (1 2 3) (1 4 5) (1 6 8) (1 7 8) (7 9 10) (7 11 12) (13 14 15) (13 16 17) (13 18 20) (13 19 20) (19 21 22) (19 23 24) 
 
One 2-cycle + one 4-cycle  (= Three 3-cycles) 
 

(1 2) (3 4 5 6) = (1 2) (3 4) (3 5 6) = (1 2 4) (1 3 4) (3 5 6) 
 
One 4-cycle + one 2-cycle  (= Three 3-cycles) 
 

(1 2 3 4) (5 6) = (1 2 3) (1 4) (5 6) = (1 2 3) (1 4 6) (1 5 6) 
 
Odd Length Cycles 
 
5-cycle  (= Two 3-cycles) 
 

(1 2 3 4 5) = (1 2 3) (1 4 5) 
 

(1 2 3 4 5) = (1 2 5) (3 4 5) 
 

(1 2 3 4 5) = (1 4 5) (2 3 4) 
 

(1 2 3 4 5) = (2 3 4) (1 2 5) 
 

(1 2 3 4 5) = (3 4 5) (1 2 3) 
 
7-cycle   (= Three 3-cycles) 
 

(1 2 3 4 5 6 7) = (1 2 3) (1 4 5 6 7) = (1 2 3) (1 4 5) (1 6 7) 
 
9-cycle  (= Four 3-cycles) 
 

(1 2 3 4 5 6 7 8 9) = (1 2 3) (1 4 5 6 7 8 9) = (1 2 3) (1 4 5) (1 6 7 8 9) = (1 2 3) (1 4 5) (1 6 7) (1 8 9) 
 
11-cycle  (= Five 3-cycles) 
 

(1 2 3 4 5 6 7 8 9 10 11) = (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11) 
 

http://www.mementoslangues.fr/�


 

Orbit Cube   15/68   http://www.mementoslangues.fr/  Cube Solver 

13-cycle  (= Six 3-cycles) 
 

(1 2 3 4 5 6 7 8 9 10 11 12 13) = (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11) (1 12 13) 
 
15-cycle  (= Seven 3-cycles) 
 

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) = (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11) (1 12 13) (1 14 15) 
 
17-cycle  (= Eight 3-cycles) 
 

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)  
= (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11) (1 12 13) (1 14 15) (1 16 17) 

 
19-cycle  (= Nine 3-cycles) 
 

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)  
= (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11) (1 12 13) (1 14 15) (1 16 17) (1 18 19) 

 
21-cycle  (= Ten 3-cycles) 
 

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)  
= (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11) (1 12 13) (1 14 15) (1 16 17) (1 18 19) (1 20 21) 

 
23-cycle  (= Eleven 3-cycles) 
 

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)  
= (1 2 3) (1 4 5) (1 6 7) (1 8 9) (1 10 11) (1 12 13) (1 14 15) (1 16 17) (1 18 19) (1 20 21) (1 22 23) 

 
Optimized algorithms 
 
As all 3-cycles may differ in number of moves, a way of optimizing (ie. minimizing) the length of a compound 
algorithm would be to select the shortest algorithm between all combinations. 
 
Let’s consider a 15-cycle for example. There are at least fifteen ways of building a 15-cycle from seven 3-cycles. 
By running all fifteen combinations and selecting the shortest one, a reduction in number of moves of the 
compound algorithm will result. As the length of 3-cycles is usually >= 8 and <= 12, by doing so the resulting 
optimized algorithm will usually be 8 moves long. 
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Number of 3-Cycles 
 
Edges and Centers 
 
Taking the ordering of sticker numbers into account, the maximum number of 3-cycles in an orbit of 24 stickers of 
edges or centers is given by the number of arrangements of k = 3 stickers among n = 24 stickers, without 
repetitions: 
 

An,k = n!/(n – k)! = A24,3 = 12144 
 
This means that a maximum of 12144 algorithms would be necessary for permuting stickers as triplets using only 
3-cycles for an orbit of 24 stickers. If we already know the total number of center and edge orbits for an NxNxN 
cube, then we can compute the maximum number of algorithms needed to solve centers and edges using only 3-
cycles: 
 

Maximum Number of Algorithms – 3-Cycles of Centers or Edges 
N 3 4 5 6 7 8 9 10 11 20 

Orbits 1 3 5 8 11 15 19 24 29 99 
Algs 12 144 36 432 60 720 97 152 133 584 182 160 230 736 291 456 352 176 1 202 256 

 
Note that due to edge move restrictions, the actual number of algorithms is less than shown above. 
 
Corners 
 
Taking the ordering of sticker numbers into account, the maximum number of 3-cycles in an orbit of 24 stickers of 
corners is given by: 
 

24.21.18 = 9072 
 
This means that a maximum of 9072 algorithms would be necessary for permuting stickers as triplets using only 
3-cycles for an orbit of 24 stickers. Note again that due to corner move restrictions, the actual number of 
algorithms is less than that. 
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Corners 3-cycle 
 
In a 3-cycle of corners, three pieces are permuted in such a way that:  
 

1- the parity of the permutation of pieces is even, and 
2- the sum of corner twists, due to the permutation, is equal to zero (Modulo 3) 

 
For a 3-cycle, the first condition is already met because all three pieces are different from each other. In fact, any 
permutation of an odd number of pieces, ie. 3, 5, 7, etc., is always of even parity. Note that if the first condition is 
met, then the second condition is automatically met. There are just 9 different cases of corner twists: 
 

1- all three corner twists are equal (3 cases), or 
2- two twists out of three add to zero and the remaining twist is equal to zero (6 cases) 

 
If a counterclockwise (CCW) twist is represented by '-1', a no twist by '0' and a clockwise (CW) twist by '+1', then 
the 9 cases are as shown in the table below: 
 

Corners 3-cycle – Corner Twists – The 9 Cases 
Sticker Permutation Exemple Corner 0 Corner 1 Corner 2 Sum Modulo 3 

(D A B) 0 0 0 0 
(D E B) 0 +1 -1 0 
(D I B) 0 -1 +1 0 
(O A B) +1 -1 0 0 
(O E B) +1 0 -1 0 
(O I B) +1 +1 +1 0 
(F A B) -1 +1 0 0 
(F E B) -1 -1 -1 0 
(F I B) -1 0 +1 0 

Corner Permutation: (Corner 0 → Corner 1 → Corner 2 → Corner 0) 
 
If stickers are used instead of 'pieces' and 'twists', there are 27 possible cases for a given 3-cycle of corner 
pieces, of which only 9 are really different cases. For example, let’s consider the first three corners of the Orbit 
Cube, where each corner is defined as a group of 3 stickers: 
 

1- Corner 0 is (D, O, F) 
2- Corner 1 is (A, E, I) 
3- Corner 2 is (B, L, S) 
4- Corner permutation is defined as: (Corner 0 → Corner 1 → Corner 2 → Corner 0) 
5- Corner twists are unspecified so that all possible cases will be considered 

 
Corner Numbering & Lettering – Orbit Cube 

Corner 0 1 2 3 4 5 6 7 
Stickers (0, 1, 2) (3, 4, 5) (6, 7, 8) (9, 10, 11) (12, 13, 14) (15, 16, 17) (18, 19, 20) (21, 22, 23) 
Stickers (D, O, F) (A, E, I) (B, L, S) (C, R, P) (W, J, H) (X, G, N) (U, M, Q) (V, T, K) 

 
If Corners 0, 1 and 2 are cycled in that order, then stickers (D, O, F), (A, E, I) and (B, L, S) are also cycled in the 
same order. There are 27 possible cases for cycling the 3 stickers belonging to the 3 different corner pieces. In 
the table below, it can be seen that sticker permutations (D A B), (O E L) and (F I S) are actually the same, 
because they give the same algorithm. The overall number of cases is then reduced from 27 to only 9. 
 

Corners 3-cycle – Sticker Permutations & Algorithms – 9 Cases 
(D A B) U2 R2 U' L' U R2 U' L U' (O E L) U2 R2 U' L' U R2 U' L U' (F I S) U2 R2 U' L' U R2 U' L U' 
(D E B) L2 D2 L U2 L' D2 L U2 L (O I L) L2 D2 L U2 L' D2 L U2 L (F A S) L2 D2 L U2 L' D2 L U2 L 
(D I B) D R2 D L2 D' R2 D L2 D2 (O A L) D R2 D L2 D' R2 D L2 D2 (F E S) D R2 D L2 D' R2 D L2 D2 
(O A B) U' R' D' R U R' D R (F E L) U' R' D' R U R' D R (D I S) U' R' D' R U R' D R 
(O E B) R' D' L D R D' L' D (F I L) R' D' L D R D' L' D (D A S) R' D' L D R D' L' D 
(O I B) R2 D2 L D R2 D' L' D R2 D R2 (F A L) R2 D2 L D R2 D' L' D R2 D R2 (D E S) R2 D2 L D R2 D' L' D R2 D R2 
(F A B) R' F2 R' B' R F2 R' B R2 (D E L) R' F2 R' B' R F2 R' B R2 (O I S) R' F2 R' B' R F2 R' B R2 
(F E B) U' F D F' U F D' F' (D I L) U' F D F' U F D' F' (O A S) U' F D F' U F D' F' 
(F I B) U2 B U' F2 U B' U' F2 U' (D A L) U2 B U' F2 U B' U' F2 U' (O E S) U2 B U' F2 U B' U' F2 U' 

Corner Permutation: (Corner 0 → Corner 1 → Corner 2 → Corner 0) 
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Taking corner twists into account, this means that: 
 

1- there are only 9 different ways of cycling 3 corners for any given permutation of 3 pieces 
2- sticker permutations can be used instead of {corner piece permutations + corner twists} 

 
As there are only 8 corners, even permutations of corner pieces are limited to 3-, 5- and 7-cycles of corners. If 5- 
and 7-cycles are not available, they can still be built using only 3-cycles. Examples are given in the table below. 
 

Corners 5-cycle & 7-cycle Built from 3-cycles – Examples 
5-cycle – (D E S C J): F' D' B2 D F D' B2 D' L2 U L D2 L' U' L D2 L D2 

7-cycle – (F E B P J X Q): U' B D' B' U B D' B U2 B' D2 B U2 B2 R' F L F' R F L' F' 
 
Corner Orientation 
 
This is to show how to extract corner twists from sticker vectors. 
 
Let’s consider sticker permutation (B R G) or (6 10 16): F2 R' F2 R' B2 R F2 R' B2 R2 F2 
 
Reference sticker vector: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23) 
 
Permuted sticker vector: (0, 1, 2, 3, 4, 5, 16, 17, 15, 8, 6, 7, 12, 13, 14, 9, 10, 11, 18, 19, 20, 21, 22, 23) 
 
Corner 0 permutation: (16 → 6, 17 → 7, 15 → 8) 
Sticker group (16 17 15) must be shifted right to obtain a correct ordering of numbers, ie. in ascending order 
(15 16 17), thus Corner 0 twist is +1 
 
Corner 1 permutation: (8 → 9, 6 → 10, 7 → 11) 
Sticker group (8 6 7) must be shifted left to obtain a correct ordering of numbers, ie. in ascending order 
(6 7 8), thus Corner 1 twist is -1 
 
Corner 2 permutation: (9 → 15, 10 → 16, 11 → 17) 
Sticker group (9 10 11) need not be shifted because it is already in the right order, thus Corner 2 twist is 0 
 
Conclusion: 
 

1- if right shift, then corner twist = +1 
2- if left shift, then corner twist = -1 
3- if no shift, then corner twist = 0 

 
Corner Parity 
 
Corner parity is odd if corner pieces are permuted in such a way that: 
 

1- the parity of the permutation of pieces is odd, or 
2- the sum of corner twists, due to the permutation, is not equal to zero (Modulo 3) 

 
The first condition is met if an even number of different pieces is cycled, ie for single 2-, 4-, 6- or 8-cycles of 
corners. In this case, there is permutation parity. In the second case there is an orientation parity. When there is 
corner parity, a few other pieces are also permuted, ie. edges and/or centers. Note that a corner permutation 
parity doesn’t imply that there is automatically an orientation parity. 
 
To check if there is corner parity, check if the number of permuted corners is even. If this is the case, corner 
parity should be fixed. To fix corner parity, simply do one ¼ turn of a single face or apply a corner swap algorithm. 
This will make the number of permuted corners odd, thus toggling corner parity from odd to even. We already 
know that if the number of permuted corner pieces is odd, then there is no permutation parity and no orientation 
parity and that any even permutation of corners can be solved with 3-cycles of stickers. 
 
Corner Swap 
 
A corner swap is a 2-cycle of corners where corners i and j are swapped. This can be used to fix corner parity. A 
corner swap algorithm may be composed of two parts. The first one is a dedge swap and the second is a T-Perm 
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or N-Perm. Any of these 2 perms will swap 2 corners and 2 dedges. The second dedge swap will cancel out the 
first one, thus leaving a single corner swap plus a number of other permuted pieces. 
 
Here is a corner swap example as applied to a 6x6x6 or 7x7x7 cube 
 

1- Stefan’s 5x5x5 (second) Dedge Swap applied to a 6x6x6 or 7x7x7 cube: 
T3R2 T3F2 U2 VR2 U2 T3F2 T3R2 (7 moves) 

 
2- T-Perm (to swap 2 adjacent corners and 2 opposed edges on a same face): 

F' U' F U F R' F2 U F U F' U' F R (14 moves) 
 

3- Modified T-Perm (to swap 2 symmetrical corners and 2 opposed edges on a same face): 
R2 U F U' F' U' R U2 F' U' F' U F U' R (15 moves) 

 
4- N-Perm (to swap 2 opposed corners on a same face and 2 opposed edges on a same face): 

R U' L U2 R' U R L' U' L U2 R' U L' U (15 moves) 
 

5- Dedge swap + T-Perm (to swap 2 adjacent corners): 
T3R2 T3F2 U2 VR2 U2 T3F2 T3R2 F' U' F U F R' F2 U F U F' U' F R (21 moves) 

 
6- Dedge swap + Modified T-Perm (to swap 2 symmetrical corners): 

T3R2 T3U2 F2 VR2 F2 T3U2 T3R2 R2 U F U' F' U' R U2 F' U' F' U F U' R (22 moves) 
 

7- Dedge swap + N-Perm (to swap 2 opposed corners on a same face): 
T3R2 T3F2 U2 VR2 U2 T3F2 T3R2 R U' L U2 R' U R L' U' L U2 R' U L' U (22 moves) 

 
From these example, templates can be built that will swap any 2 corners on a big cube. Note that for odd-order 
cubes, these algorithms will also swap 2 middle edges (midges are those edges located on a middle slice) and 
turn some centers on two faces, while preserving their color. This is shown on the picture below: 
 

Corner Swap – Example – 7x7x7 Cube 

 
Corner stickers A and D are swapped in Orbit 03 – Middle edge stickers A and W are also swapped (side effect) 

T3R2 T3F2 U2 VR2 U2 T3F2 T3R2 F' U' F U F R' F2 U F U F' U' F R (21 moves) 
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Orbits and Scalable Algorithms 
 

Corner 
D.03 

Edge 
Outer Wing 

Left 
D.06 
NF 

Edge 
Inner Wing 

Left 
D.09 

NF → N3F 

Middle Edge 
Inner Wing 

D.12 
MF 

Edge 
Inner Wing 

Right 
A.01 

NF → N3F 

Edge 
Outer Wing 

Right 
A.02 
NF 

Corner 
A03 

 

Outer 
Corner-Center 

D.05 
NF 

Edge-Center 
Inner Wing 

Left 
D.08 
NF 

N3F 

Outer 
Middle-Center 

D.11 
NF 
MF 

 

Outer 
Corner-Center 

A.05 
NF 

 

 

Edge-Center 
Inner Wing 

Right 
D.04 

NF → N3F 
N3F → NF 

Inner 
Corner-Center 

D.07 
NF → N3F 

Inner 
Middle-Center 

D.10 
NF → N3F 

MF 

Inner 
Corner-Center 

A.07 
NF → N3F 

  

   
True Center 

A.00 
F → T3F 

   

       

       

       

 
This 7x7 table shows how algorithms can be converted from one orbit to another. For example, if an algorithm 
exists for cycling Outer Wing Left Edges in orbit 06, then the same algorithm can be re-used for cycling Inner 
Wing Left Edges in orbit 09, simply by replacing 'N' with 'N3'. Similarly, if an algorithm exists for cycling Outer 
Corner-Centers in orbit 05, then the same algorithm can be re-used for cycling Inner Corner-Centers in orbit 07, 
simply by replacing 'N' with 'N3'. And finally, algorithms for orbits 04 and 08 can be exchanged simply by 
swapping 'N' and 'N3'. 
 
Examples: 
(I A E) Orbit 04 – 3-cycle of edge-centers (left) : F [NR, N3F R' N3F'] F' 
(I A E) Orbit 08 – 3-cycle of edge-centers (right) : F [N3R, NF R' NF'] F' 
(I A E) Orbit 11 – 3-cycle of midge-centers (outer) : F [MR, NF R' NF'] F' 
(I A E) Orbit 10 – 3-cycle of midge-centers (inner) : F [MR, N3F R' N3F'] F' 
(F A E) Orbit 05 – 3-cycle of corner-centers (outer) : F [NR, NF R' NF'] F' 
(F A E) Orbit 07 – 3-cycle of corner-centers (inner) : F [N3R, N3F R' N3F'] F' 
(I A O) Orbit 12 – 3-cycle of midges: F [MR, F R' F'] F' 
(I A O) Orbit 06 – 3-cycle of edges: F [NR, F R' F'] F' 
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Part II 
 

Algorithm Templates 
 
Introduction 
 
An algorithm template is a convenient way of representing a set of cube algorithms that will be executed on a 
computer. The shortest template is simply represented by letter X, which means any move from an ordered set 
of 12 outer layer quarter-turns: X = {F, F', R, R', U, U', L, L', D, D', B, B'}. Letter X' will then represent any outer 
layer quarter-turn from the associated inverted set: X' = {F', F, R', R, U', U, L', L, D', D, B', B} and letter X2 any 
outer layer half-turn from the square set: X2 = {F2, R2, U2, L2, D2, B2}. This holds for face moves only. 
 
Similar templates also exist for slice moves, but moves in a set depend on the orbit in which the pieces are 
moving. For example, if we consider the first edge orbit, then MX will represent any slice quarter-turn from the set: 
MX = {NF, NF', NR, NR', NU, NU', NL, NL', ND, ND', NB, NB'}. 
 
Slice quarter-turns for center orbits will be represented by different sets such as: MX =  {NF, NF', NR, NR', NU, 
NU', NL, NL', ND, ND', NB, NB', N3F, N3F', N3R, N3R', N3U, N3U', N3L, N3L', N3D, N3D', N3B, N3B'}, for 
pieces that move in the first (NF) and second (N3F) slices, for example. 
 
Complex templates can be built by concatenating basic templates such as X, X', X2, MX, MX' and MX2 and 
sweeping 'variables' of the set. By using nested For…Next loops to sweep variables, all occurences of a given 
template are then executed and each final cube state compared to the goal cube state. If there is a match 
between the two, then an algorithm has been found that will change the cube state from initial to goal. This will 
be better explained on an exemple. Let’s select template [(X Y X'), MZ], which is a Niklas commutator acting on 
edges: 
 

[(X Y X'), MZ] = X Y X' MZ X Y' X' MZ' 
 
There are three independent variables in this template, namely X, Y and MZ. Each variable is swept 
independently. This means that there are three nested For…Next loops for sweeping the 2 outer layer quarter-
turns sets (X / X' and Y / Y') plus 1 slice quarter-turn set (MZ / MZ'). The search is exhaustive because all 
combinations represented in the template are checked. This is a brute force search method applied to finding 
algorithms. 
 
Building Templates 
 
Templates can be built after already existing algorithms. Consider, for example, the following algorithm: 
 

(R U) (F' L F NR F' L' F NR') (U' R') (12-mover) 
 
This cycles 3 edges (1 → 13 → 47 → 1) on face F. From this, we can build a more general template that could 
be used elsewhere on the cube, just by adding a setup move: 
 

(X Y) [(Z P Z'), MQ] (X Y)' = X Y Z P Z' MQ Z P' Z' MQ' Y' X' 
 
where R = X, U = Y, F' = Z, L = P and NR = MQ. This template of length 12 will then give a 3-cycle of edges at 
many places on the cube. By looking more closely at the template, we can see that this is also a Niklas 
commutator [(Z P Z'), MQ] combined with a particular setup move (X Y). 
 
Sometimes, algorithms shorter than the template may even be found, thanks to cancellations or combinations of 
a few consecutive moves. In the example above, we can see that Y and Z do cancel each other out if Y = Z'. A 
shorter 10-move algorithm, which cycles exactly the same 3 edges as the previous 12-mover, can then be used, 
where Y = Z' = R': 
 

D' F R' NF' R F' R' NF R D (10-mover) 
 
Finding the shortest (fewest move) algorithm when executing a template does not mean that this is an optimal 
one in terms of 'absolute' number of moves. It only means that no shorter algorithm will be found using this 
particular template. This is why it is better to use a set of different templates until the shortest algorithm among a 
given set of templates has been found. 
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AlgorithmFinder7 – Example – 3-Cycle of Edges 

 
Template: (X Y) [(Z P Z'), MQ] (X Y)' – Shortest algorithm found: D' F R' NF' R F' R' NF R D (10-mover) 

 
3-cycle of edges on face F (1 → 13 → 47 →1) 
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Shifted Templates 
 
When a template has been found for cycling some pieces, other templates for cycling other pieces can also be 
found, simply by shifting variables inside a template, as shown in the example below: 
  

A [B, MX] A' = A B MX B' MX' A' 
 
If this template is shifted, a reduction in number of moves may be obtained just by cancelling 2 consecutive 
moves: 
 

A B MX B' MX' A' → A' A B MX B' MX' = B MX B' MX' 
 
The end result is a template that will also cycle similar pieces on the cube. Here is an example: 
 

D' F R' NF' R F' R' NF R D (10-mover) 
 

D' F R' NF' R F' R' NF R D → D D' F R' NF' R F' R' NF R = F R' NF' R F' R' NF R 
 

F R' NF' R F' R' NF R →  R F R' NF' R F' R' NF →  NF R F R' NF' R F' R' → R' NF R F R' NF' R F' etc… 
 
Inverted Templates 
 
If a template is used to find an algorithm for a 3-cycle of stickers, the same but inverted (or primed) template will 
also find an algorithm for another 3-cycle of the same stickers, but cycled in a different order, where 2 out of 3 
stickers are simply swapped. Let’s consider a 3-cycle of centers on a 7x7x7 cube: [NL, NU' R' NU]. This Niklas 
commutator will cycle 3 centers, whereas the inverted commutator [NL, NU' R' NU]' = [NU' R' NU, NL] will cycle 
the same stickers, but in a different order: 
 

3-cycle Alg: (8 → 12 → 106 → 8) 
3-cycle Alg': (8 → 106 → 12 → 8) 

 
This shows that templates for 3-cycles of stickers should come in pairs: 
 

a pair of templates = template + inverted template 
 
Niklas Commutators 
 
Niklas commutators are very useful for building 3-cycles of corners, edges or centers, without modifying other 
pieces on the cube. There are many possible variations, depending of the type of pieces to be cycled and on the 
outer layers and slices that are involved. The basic Niklas commutator is an 8-mover. By adding appropriate 
setup moves, triplets of stickers in a same orbit can be cycled. Setup moves of 0, 1, 2 or 3 moves are sufficient 
for cycling any triplet. This means that any triplet of stickers in a same orbit can be cycled simply by using an 
optimal combination of {setup move + Niklas commutator}. 
 

Templates – Niklas Commutators – Centers 3-Cycle 
Commutator Inverted Commutator 

[MX, Y MZ Y'] [X MY X', MZ] 
[X, MY MZ MY'] [MX MY MX', Z] 
[MX, MY Z MY'] [MX Y MX', MZ] 

Templates – Commutators + Setup Moves – Centers 3-Cycle 
Commutator + Setup Move Inverted Commutator + Setup Move 

(X) [ ] (X)' (X) [ ]' (X)' 
(MX) [ ] (MX)' (MX) [ ]' (MX)' 
(X MY) [ ] (X MY)' (X MY) [ ]' (X MY)' 
(MX Y) [ ] (MX Y)' (MX Y) [ ]' (MX Y)' 
(X MY MZ) [ ] (X MY MZ)' (X MY MZ) [ ]' (X MY MZ)' 
(MX Y MZ) [ ] (MX Y MZ)' (MX Y MZ) [ ]' (MX Y MZ)' 
(MX MY Z) [ ] (MX MY Z)' (MX MY Z) [ ]' (MX MY Z)' 
(X Y MZ) [ ] (X Y MZ)' (X Y MZ) [ ]' (X Y MZ)' 
(X MZ Y) [ ] (X MZ Y)' (X MZ Y) [ ]' (X MZ Y)' 
(MX Y Z) [ ] (MX Y Z)' (MX Y Z) [ ]' (MX Y Z)' 
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Generic & Specific Templates 
 
Generic templates are general purpose templates which are applicable to a wide range of cases. They usually 
use a maximum number of variables and are therefore slow to execute. Specific templates are derived from 
generic templates by introducing dependencies between a few variables so as to decrease computing time. It’s a 
good practice not to use more than 4 variables in a specific template. 
 

Generic & Specific Templates Examples – Niklas Commutators – Centers 3-Cycle 
Generic Variables Specific Variables 

(X MY) [Z, MP MQ MP'] (X MY)' 5 (X MY) [X', MZ MP MZ'] (X MY)' 4 
(MX MY Z) [MP, MQ V MQ'] (MX MY Z)' 6 (MX MY Y') [MZ, MP Z' MP'] (MX MY Y')' 4 
(MX Y MZ) [P, MQ V MQ'] (MX Y MZ)' 6 (MX Y MX) [Z, MP Z' MP'] (MX Y MX)' 4 
(X Y MZ) [P, MQ MV MQ'] (X Y MZ)' 6 (X Y MZ) [Y, MP MY MP'] (X Y MZ)' 4 
 
Extended Templates 
 
Extended templates are special templates which are applicable to 'difficult to solve' cases. They use all available 
variables, including quarter-turn and half-turn variables and are therefore very slow to execute. 
 

Extended Templates – Niklas Commutators 
Commutator Variables Inverted Commutator Variables 

 [X, Y Z Y'] 3 [X Y X', Z] 3 
[X, Y (Z P) Y'] 4 [X (Y Z) X', P] 4 
X [Y, Z P Z'] X' 4 X [Y Z Y', P] X' 4 
[X, (Y Z) P (Y Z)'] 4 [(X Y) Z (X Y)', P] 4 
(X Y) [Z, P Q P'] (X Y)' 5 (X Y) [Z P Z', Q] (X Y)' 5 
X [Y, Z (P Q) Z'] X' 5 X [Y (Z P) Y', Q] X' 5 
 
Below is an example of an extended set of moves with up to 55 variables: 
X = {F2, R2, U2, L2, D2, B2, NF2, NR2, NU2, NL2, ND2, NB2, N3F2, N3R2, N3U2, N3L2, N3D2, N3B2, F, Fi, R, 
Ri, U, Ui, L, Li, D, Di, B, Bi, NF, NFi, NR, NRi, NU, NUi, NL, NLi, ND, NDi, NB, NBi, N3F, N3Fi, N3R, N3Ri, N3U, 
N3Ui, N3L, N3Li, N3D, N3Di, N3B, N3Bi, NoMove} 
 

UserForm – Extended Templates 
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Scalable Algorithms 
 
When running a template, the shortest algorithms found for 3-cycles of stickers are selected if and only if the 
computed final cube state and the goal state are identical. The selection criteria specifies that all other stickers 
shall stay in place. In other words, any algorithm found will modify the locations of only 3 stickers in the same 
orbit. This is a very useful feature because now these algorithms are perfectly scalable to any cube order N and 
can also be re-used for 3-cycles of stickers on other slices. This is best shown on an example. Let’s consider a 
3-cycle of centers on a 7x7x7 cube: 
 

D' NR NB' ND NB U NB' ND' NB U' NR' D = (D' NR) [NB' ND NB, U] (D' NR)' 
 
This algorithm will also cycle 3 center stickers on the same locations on a 17x17x17 cube. Moreover, by 
replacing slice move NB with N3B, a 3-cycle of centers in another orbit is obtained: 
 

D' NR N3B' ND N3B U N3B' ND' N3B U' NR' D = (D' NR) [N3B' ND N3B, U] (D' NR)' 
 

Scalable Algorithms – Example – 3-Cycle of Centers – Extension To Another Orbit 

 
7x7x7 Cube – D' NR N3B' ND N3B U N3B' ND' N3B U' NR' D – (19 → 107 → 39 → 19) 
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Scalable Algorithms – Example – 3-Cycle of Centers – Extension To Higher Order Cubes 

 
7x7x7 Cube – D' NR NB' ND NB U NB' ND' NB U' NR' D 

 
17x17x17 Cube – D' NR NB' ND NB U NB' ND' NB U' NR' D 
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SOCS7 Algorithms DataBase – Example – 3-Cycle of Centers 

 
7x7x7 Cube – A rather populated UserForm 

 
7x7x7 Cube – A selection of database algorithms – 3-cycle of centers – First orbit 
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Centers – Specific Templates 
 
Centers – Orbits 
 
There are 2 kinds of center orbits for an even-order cube and 4 kinds for an odd-order one: 
 

1- Corner-Center, where each sticker is located at the intersection of two equally numbered slices, eg. 
NF/NR or N3F/N3R 

2- Edge-Center or obliques, where each sticker is located at the intersection of two differently numbered 
slices, eg. NF/N3R 

3- Midge-Center, where each sticker is located at the intersection of the middle edge slice and of any other 
slice, eg. NF/MR (odd-order cubes only) 

4- True-Center, where each sticker is located on one of the 6 true center facelets (odd-order cubes only). 
 
Centers – Templates 
 
Generic (and slow to execute) templates are executed first, to give an idea of what short specific templates 
would look like. Then specific templates are selected on the following criteria: 
 

1- No more than 3 variables per template, eg. F, R, U, to insure short execution time 
2- No more than 12 moves per template, eg. 8, 9, 10, 11, 12 to insure short (and nearly optimal) algorithms 

 
Centers – Corner-Center Orbits – Templates 
 
A total of 21 pairs of fast specific templates is sufficient to find all algorithms of any corner-center orbit. 
 

Centers – Corner-Center Orbits – Specific Templates – Niklas Commutators – 3-Cycles 
Algorithm Template Inverted Algorithm Template Max. Number of Moves 

[X, MY MZ MY'] [MX MY MX', Z] 8 
MX2 [MY2, MX Z MX'] MX2 MX2 [MX Y MX', MZ2] MX2 9 
MX [Y, MZ MY' MZ] MX' MX [MY MZ MY', Z'] MX' 10 
MX [Y2, MZ MX MZ'] MX' MX [MY MX MY', Z2] MX' 10 
X [MX', MY Z MY'] X' X [MY Z MY', MX'] X' 10 
MX [X2, MY MZ MY'] MX' MX [MY MZ MY', X2] MX' 10 
MX [MY, MZ Y MZ'] MX' MX [MY Z MY', MZ] MX' 10 
MX [MX2, MY Z2 MY'] MX' MX [MX2, MY Z2 MY'] MX' 10 
X [MY, MZ Y2 MZ'] X' X [MY Z2 MY', MZ] X' 10 
(X MX') [MY, MX' Z2 MX] (X MX')' (X MX') [MX' Y2 MX, MZ] (X MX')' 11 
(X MY) [MZ, MY X2 MY'] (X MY)' (X MY) [MY X2 MY', MZ] (X MY)' 11 
(X MY) [Z2, MY MZ2 MY'] (X MY)' (X MY) [MY MZ2 MY', Z2] (X MY)' 11 
(X MY) [X2, MZ MX MZ'] (X MY)' (X MY) [MZ MX MZ', X2] (X MY)' 12 
(X MY) [Z2, MX MZ MX'] (X MY)' (X MY) [MX MZ MX', Z2] (X MY)' 12 
(X MY) [Z, MX MZ MX'] (X MY)' (X MY) [MX MZ MX', Z] (X MY)' 12 
(X MY) [X, MZ MX' MZ'] (X MY)' (X MY) [MZ MX' MZ', X] (X MY)' 12 
(X MY) [MZ, MY Z MY'] (X MY)' (X MY) [MY Z MY', MZ] (X MY)' 12 
(X MY) [Z, MY MZ MY'] (X MY)' (X MY) [MY MZ MY', Z] (X MY)' 12 
(MX Y) [MZ2, Y MX' Y'] (MX Y)' (MX Y) [Y MX' Y', MZ2] (MX Y)' 12 
(MX Y2) [MZ2, MX' Z2 MX] (MX Y2)' (MX Y2) [MX' Z2 MX, MZ2] (MX Y2)' 12 
(X2 Y) [MZ, MY' Z MY] (X2 Y)' (X2 Y) [MY' Z MY, MZ] (X2 Y)' 12 
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Centers – Edge-Center Orbits – Templates 
 
A total of 11 pairs of fast specific templates is sufficient to find all algorithms of any edge-center orbit. 
 

Centers – Edge-Center Orbits – Specific Templates – Niklas Commutators – 3-Cycles 
Algorithm Template Inverted Algorithm Template Max. Number of Moves 

[X, MY MZ MY'] [MX MY MX', Z] 8 
MX2 [MY2, MX Z MX'] MX2 MX2 [MX Y MX', MZ2] MX2 9 
MX [Y, MZ MY' MZ] MX' MX [MY MZ MY', Z'] MX' 10 
MX [Y2, MZ MX MZ'] MX' MX [MY MX MY', Z2] MX' 10 
X [MX', MY Z MY'] X' X [MY Z MY', MX'] X' 10 
(X MY) [X2, MZ MX MZ'] (X MY)' (X MY) [MZ MX MZ', X2] (X MY)' 12 
(X MY) [Z2, MX MZ MX'] (X MY)' (X MY) [MX MZ MX', Z2] (X MY)' 12 
(X MY) [Z, MX MZ MX'] (X MY)' (X MY) [MX MZ MX', Z] (X MY)' 12 
(X MY) [X, MZ MX' MZ'] (X MY)' (X MY) [MZ MX' MZ', X] (X MY)' 12 
(X MY) [MZ, MY Z MY'] (X MY)' (X MY) [MY Z MY', MZ] (X MY)' 12 
(X MY) [Z, MY MZ MY'] (X MY)' (X MY) [MY MZ MY', Z] (X MY)' 12 
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Edges – Specific Templates 
 
Edges – Templates 
 
Half-turns have been added to the basic sets of quarter-turns to increase the number of available algorithms: 
 

1- 1st set of 12 outer layer quarter-turns: 
X = {F2, R2, U2, L2, D2, B2, F, F', R, R', U, U', L, L', D, D', B, B'} 

2- 2nd set of 12 outer layer quarter-turns: 
X' = { F2, R2, U2, L2, D2, B2, F', F, R', R, U', U, L', L, D', D, B', B} 

3- Set of 6 outer layer half-turns: 
X2 = {F2, R2, U2, L2, D2, B2} 

4- 1st set of 12 slice quarter-turns: 
MX = {NF2, NR2, NU2, NL2, ND2, NB2, NF, NF', NR, NR', NU, NU', NL, NL', ND, ND', NB, NB'} 

5- 2nd set of 12 slice quarter-turns: 
MX' = {NF2, NR2, NU2, NL2, ND2, NB2, NF', NF, NR', NR, NU', NU, NL', NL, ND', ND, NB', NB} 

6- Set of 6 slice half-turns: 
MX2 = {NF2, NR2, NU2, NL2, ND2, NB2} 

 
Generic (and slow to execute) templates are executed first, to give an idea of what short specific templates 
would look like. Then specific templates are selected on the following criteria: 
 

1- No more than 3 variables per template, eg. F, R, U, to insure short execution time 
2- No more than 12 moves per template, eg. 8, 9, 10, 11, 12 to insure short (and nearly optimal) algorithms 

 
A total of 15 pairs of fast specific templates is sufficient to find all algorithms of any edge orbit. 
 

Edges – Specific Templates – Niklas Commutators – 3-Cycles 
Algorithm Template Inverted Algorithm Template Max. Number of Moves 

[X Y X', MZ] [MX, (Y Z Y')] 8 
[X, Y MZ Y'] [X MY X', Z] 8 
[X2, Y MZ Y'] [X MY X', Z2] 8 
X [Y, X MZ X'] X' X [X MY X', Z] X' 9 
X [Y MZ Y', X] X' X [X, Y MZ Y'] X' 9 
MX [Y2, MX Z2 MX'] MX' MX [MX Y2 MX', Z2] MX' 9 
X [Y, Z MY' Z'] X' X [Y MZ Y', Z'] X' 10 
X [MY, Z Y' Z'] X' X [Y Z Y', MZ'] X' 10 
X [MY2, Z Y Z'] X' X [Y Z Y', MZ2] X' 10 
MX [Y2, Z MY2 Z'] MX' MX [Y MZ2 Y', Z2] MX' 10 
(MX Y) [Y, Z MY' Z'] (MX Y)' (MX Y) [Z MY' Z', Y] (MX Y)' 11 
(MX Y) [Z2, Y MZ2 Y'] (MX Y)' (MX Y) [Y MZ2 Y', Z2] (MX Y)' 11 
(X Y) [X2, Z MX' Z'] (X Y)' (X Y) [Z MX' Z', X2] (X Y)' 12 
(X MY) [Z2, X' MZ2 X] (X MY)' (X MY) [X' MZ2 X, Z2] (X MY)' 12 
(X Y2) [Z, X' MZ X] (X Y2)' (X Y2) [X' MZ X, Z] (X Y2)' 12 
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Edges – Specific Templates – Odd-Order Cubes – Middle Edge Flips 
 
Edges – Templates 
 
Half-turns have been added to the basic sets of quarter-turns to increase the number of available algorithms: 
 

1- 1st set of 12 outer layer quarter-turns: 
X = {F2, R2, U2, L2, D2, B2, F, F', R, R', U, U', L, L', D, D', B, B'} 

2- 2nd set of 12 outer layer quarter-turns: 
X' = { F2, R2, U2, L2, D2, B2, F', F, R', R, U', U, L', L, D', D, B', B} 

3- Set of 6 outer layer half-turns: 
X2 = {F2, R2, U2, L2, D2, B2} 

4- 1st set of 12 slice quarter-turns: 
MX = {NF2, NR2, NU2, NL2, ND2, NB2, NF, NF', NR, NR', NU, NU', NL, NL', ND, ND', NB, NB'} 

5- 2nd set of 12 slice quarter-turns: 
MX' = {NF2, NR2, NU2, NL2, ND2, NB2, NF', NF, NR', NR, NU', NU, NL', NL, ND', ND, NB', NB} 

6- Set of 6 slice half-turns: 
MX2 = {NF2, NR2, NU2, NL2, ND2, NB2} 

 
Generic (and slow to execute) templates are executed first, to give an idea of what short specific templates 
would look like. Then specific templates are selected on the following criteria: 
 

1- No more than 3 variables per template, eg. F, R, U, to insure short execution time 
2- No more than 16 moves per template, eg. 12 – 16 to insure short (and nearly optimal) algorithms 

 
A total of 5 fast specific templates is sufficient to find all algorithms of any middle edge orbit. 
 

Edges – Specific Templates – Middle-Edge Flips – 2-Cycles – MonoFlips 
Algorithm Template Max. Number of Moves 

[X Y Z X' Y', MZ] 12 
[X Y Z X' Y', MZ'] 12 
(X) [Y Z P Y' Z', MP] (X)' 14 
(X) [Y Z P Y' Z', MP'] (X)' 14 
(X Y) [Z P Q Z' P', MQ] (X Y)' 16 
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Edges – Specific Templates – Parity Algorithms 
 
Edges – Templates 
 
Basic sets of quarter- and half-turns: 
 

1- 1st set of 12 outer layer quarter-turns: 
X = {F, F', R, R', U, U', L, L', D, D', B, B'} 

2- 2nd set of 12 outer layer quarter-turns: 
X' = { F', F, R', R, U', U, L', L, D', D, B', B} 

3- Set of 6 outer layer half-turns: 
X2 = {F2, R2, U2, L2, D2, B2} 

4- 1st set of 12 slice quarter-turns: 
MX = {NF, NF', NR, NR', NU, NU', NL, NL', ND, ND', NB, NB'} 

5- 2nd set of 12 slice quarter-turns: 
MX' = {NF', NF, NR', NR, NU', NU, NL', NL, ND', ND, NB', NB} 

6- Set of 6 slice half-turns: 
MX2 = {NF2, NR2, NU2, NL2, ND2, NB2} 

 
Generic (and slow to execute) templates are executed first, to give an idea of what short specific templates 
would look like. Then specific templates are selected on the following criteria: 
 

1- No more than 4 variables per template, eg. F, R, U, L to insure short execution time 
2- No more than 18 moves per template, eg. 12 – 18 moves to insure short (and nearly optimal) algorithms 

 
A total of 10 fast specific templates is sufficient to find all edge parity algorithms of any edge orbit. 
 

Edges – Specific Templates – Parity Algorithms – 2-Cycles 
Double Edge Flip Algorithm Template Number of Moves 

(MX Y2 MX Y2) (Z2 MX Z2) (MP Y2 MP' Y2) MX2 12 
(X) ((MY Z2 MY Z2) (P2 MY P2) (MQ Z2 MQ' Z2) MY2) (X') 14 
(X2) ((MY Z2 MY Z2) (X2 MY X2) (MP Z2 MP' Z2) MY2) (X2) 14 
(MX2 Y2) (MX Z2 MX' Z2) (P2 MX' P2) (MQ Z2 MQ' Z2) (MX2 Y2)' 15 
(MX2 Y) (MZ P2 MZ' P2) (Q2 MZ' Q2) (MX P2 MX' P2) (MX2 Y)' 15 
(X Y) ((MX Z2 MX Z2) (Y2 MX Y2) (MP Z2 MP' Z2) MX2) (X Y)' 16 
(X2 Y) ((MX Z2 MX Z2) (Y2 MX Y2) (MP Z2 MP' Z2) MX2) (X2 Y)' 16 
(X Y Z) ((MX P2 MX P2) (Y2 MX Y2) (MZ P2 MZ' P2) MX2) (X Y Z)' 18 
(X Y Z) ((MP Y2 MP Y2) (Z2 MP Z2) (MX' Y2 MX Y2) MP2) (X Y Z)' 18 
(X Y X) ((MZ P2 MZ P2) (Y2 MZ Y2) (MX P2 MX' P2) MZ2) (X Y X)' 18 
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Corners – Specific Templates 
 
Corners – Templates 
 
Half-turns have been added to the basic sets of quarter-turns to increase the number of available algorithms: 
 

1- 1st set of 12 outer layer quarter-turns: 
X = {F2, R2, U2, L2, D2, B2, F, F', R, R', U, U', L, L', D, D', B, B'} 

2- 2nd set of 12 outer layer quarter-turns: 
X' = { F2, R2, U2, L2, D2, B2, F', F, R', R, U', U, L', L, D', D, B', B} 

3- Set of 6 outer layer half-turns: 
X2 = {F2, R2, U2, L2, D2, B2} 

 
Generic (and slow to execute) templates are executed first, to give an idea of what short specific templates 
would look like. Then specific templates are selected on the following criteria: 
 

1- No more than 3 variables per template, eg. F, R, U, to insure short execution time 
2- No more than 12 moves per template, eg. 8, 9, 10, 11, 12 to insure short (and nearly optimal) algorithms 

 
A total of 6 pairs of fast specific templates is sufficient to find all algorithms of the corner orbit. 
 

Corners – Specific Templates – Niklas Commutators – 3-Cycles 
Algorithm Template Inverted Algorithm Template Max. Number of Moves 

[X, (Y Z Y')] [(X Y X'), Z] 8 
X [Y, X Z2 X'] X' X [X Y2 X', Z] X' 9 
X [Y2, X Z X'] X' X [X Y X', Z2] X' 9 
(X2 Y) [X2, Y Z Y'] (X2 Y)' (X2 Y) [Y Z Y', X2] (X2 Y)' 11 
(X Y) [Y, X' Z X] (X Y)' (X Y) [X' Z X, Y] (X Y)' 11 
[X2, (Y Z2) Y' (Y Z2)'] [(X Y2) X' (X Y2)', Z2] 12 
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Corners – Specific Templates – Corner Twists 
 
Corners – Templates 
 
Half-turns have been added to the basic sets of quarter-turns to increase the number of available algorithms: 
 

1- 1st set of 12 outer layer quarter-turns: 
X = {F2, R2, U2, L2, D2, B2, F, F', R, R', U, U', L, L', D, D', B, B'} 

2- 2nd set of 12 outer layer quarter-turns: 
X' = { F2, R2, U2, L2, D2, B2, F', F, R', R, U', U, L', L, D', D, B', B} 

3- Set of 6 outer layer half-turns: 
X2 = {F2, R2, U2, L2, D2, B2} 

 
Generic (and slow to execute) templates are executed first, to give an idea of what short specific templates 
would look like. Then specific templates are selected on the following criteria: 
 

1- No more than 4 variables per template, eg. F, R, U, L to insure short execution time 
2- No more than 14 moves per template to insure short (and nearly optimal) algorithms 

 
A total of 4 specific templates is sufficient to find all the corner twist algorithms. 
 

Corners – Specific Templates – Corner Twists 
Algorithm Template Max. Number of Moves 

[X, (Y Z) P (Y Z)'] 12 
[(X Y) Z (X Y)', P] 12 
X Y Z Y' P Z P' X' P Z' P' Y Z' Y' 14 
X Y Z Y' X' Y P X' P' Z' P X P' Y' 14 
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Part III 
 

Algorithm DataBase 
 
DataBase Indexing 
 
The simplest way of indexing algorithms for 3- and 2-cycles of corners, edges and centers is to define a 
database index as a function of integer numbers that will represent the cycle. 
  
To look-up an algorithm that will cycle stickers, compute the index from simple formulas shown below and extract 
the indexed algorithm from database. 
 
True Center Twist – Indexing 
 

index_CenterTwist = B + 4xD + 16xL + 64xU + 256xR + 1024xF (Base 4 Numeral System) 
 
where B, D, L, U, R and F are integer numbers ranging from 0 to 3 (0 = +0°, 1 = +90°, 2 = +180°, 3 = +270°), 
representing face center twists. 
 
Index index_CenterTwist is an integer number ranging from 2 to 4095. 
 
Because the sum of all true center twists must be equal to 0 or 2 Modulo 4, ie. 0° or 180° Modulo 360°, 
index_CenterTwist can’t take more than 2047 values (trivial case not included). 
 
True Center Twist – Indexing Example 
 

B = 2 (+180°), D = 2 (+180°), L = 1 (+90°), U = 3 (+270°), R = 3 (+270°), F = 1 (+90°) 
 

index_CenterTwist  = 2 + 4x2 + 16x1 + 64x3 + 256x3 + 1024x1 = 2010 
 

algorithm (2010) = T3B' T3F T3L T3R' T3F' T3U' T3D T3L T3R' T3B' T3F T3U T3L T3R' T3U' T3D T3L2 T3R2 
 
Corner 3-Cycle – Indexing 
 

index_Corner_3-Cycle = k + (j + ix24)x24 (Base 24 Numeral System) 
 
where i, j and k are integer numbers ranging from 0 to 23, representing 3-cycles of corner stickers (i → j → k → i). 
 
Index index_ Corner_3-Cycle is an integer number ranging from 78 to 13745. 
 
Because the sum of 3 corner twists must be equal to 0 Modulo 3, index_Corner_3-Cycle can’t take more than 
9072 values. 
 
Corner 3-Cycle – Indexing Example 
 

(0 → 4 → 14 → 0) 
 

index_Corner_3-Cycle  = 14 + (4 + 0x24)x24 = 110 
 

algorithm (110) = R U2 R D R' U2 R D' R2 
 

 
Corner 2-Cycle – Indexing 
 

Orbit Cube – Corner Numbering & Sticker Lettering 
Corner 0 1 2 3 4 5 6 7 

Numbers (0, 1, 2) (3, 4, 5) (6, 7, 8) (9, 10, 11) (12, 13, 14) (15, 16, 17) (18, 19, 20) (21, 22, 23) 
Letters (D, O, F) (A, E, I) (B, L, S) (C, R, P) (W, J, H) (X, G, N) (U, M, Q) (V, T, K) 

 
index_Corner_2-Cycle = k + (j + ix8)x8 (Base 8 Numeral System) 
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where i is an integer number ranging from 0 to 1: 
 

1- If i = 0, then corner j is twisted clockwise and corner k counterclockwise 
2- If i = 1, then corner j is twisted counterclockwise and corner k clockwise. 

 
Integer numbers j and k range from 0 to 7 and represent each of the two corners. 
 
Index index_Corner_2-Cycle is an integer number ranging from 1 to 126. 
 
Because numbers i and j must be different, index_Corner_2-Cycle can’t take more than 112 values. 
 
Corner 2-Cycle – Indexing Example 
 

k = 3 (cw), j = 6 (ccw), i = 2 
 

index_Corner_2-Cycle  = 3 + (6 + 2x8)x8 = 106 
 

algorithm (106) = U' L D' L' U L F U F' D F U' F' L' 
 
 
Edge 3-Cycle – Indexing 
 

index_Edge_3-Cycle = k + (j + ix24)x24 (Base 24 Numeral System) 
 
where i, j and k are integer numbers ranging from 0 to 23, representing 3-cycles of edge stickers (i → j → k → i). 
 
Index index_ Edge_3-Cycle is an integer number ranging from 26 to 13797. 
 
Because stickers i, j and k must belong to 3 different edge pieces, index_Edge_3-Cycle can’t take all values 
between these two bounds. 
 
Edge 3-Cycle – Indexing Example 
 

(0 → 1 → 3 → 0) 
 

index_Edge_3-Cycle  = 3 + (1 + 0x24)x24 = 27 
 

algorithm (27) = R' F U' NF' U F' U' NF U R 
 

 
Edge 2-Cycle – Indexing 
 

index_Edge_2-Cycle = j + ix24 (Base 24 Numeral System) 
 
where j and i are integer numbers ranging from 0 to 23, representing middle slice edges. Midge pieces 
represented by stickers i and j are flipped. 
 
Index index_Edge_2-Cycle is an integer number ranging from 1 to 574. 
 
Because flipped edge pieces must be different, index_Edge_2-Cycle can’t take more than 528 values. 
 
Edge 2-Cycle – Indexing Example 
 

j = 8, i = 21 
 

index_Edge_2-Cycle  = 8 + 21x24 = 487 
 

algorithm (487) = U' R F' U MR' U' F R' U F' MR F 
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Edge – Parity Fix – Indexing 
 

index_Edge_ParityFix = j + ix24 (Base 24 Numeral System) 
 
where j and i are integer numbers ranging from 0 to 23, representing edges. Two edge pieces represented by 
stickers i and j are permuted. Because it is a single 2-cycle of edge pieces, the permutation parity is odd. 
 
Index index_Edge_ParityFix is an integer number ranging from 1 to 574. 
 
Because permuted edge pieces must be different, index_Edge_ParityFix can’t take more than 528 values. 
 
Edge – Parity Fix – Indexing Example 
 

j = 4, i = 1 
 

index_Edge_ParityFix  = 4 + 1x24 = 28 
 

algorithm (28) = NU2 R ND' B2 ND B2 R2 ND R2 NU' B2 NU B2 R' NU2 
 
 
Corner-Center 3-Cycle – Indexing 
 

index_Corner-Center_3-Cycle = k + (j + ix24)x24 (Base 24 Numeral System) 
 
where i, j and k are integer numbers ranging from 0 to 23. These numbers represent 3-cycles of corner-center 
stickers (i → j → k → i). 
 
Index index_Corner-Center_3-Cycle is an integer number ranging from 26 to 13797. 
 
Because stickers i, j and k must belong to 3 different center pieces, index_Corner-Center_3-Cycle can’t take all 
values between these two bounds. 
 
Corner-Center 3-Cycle – Indexing Example 
 

(0 → 2 → 14 → 0) 
 

index_Corner-Center_3-Cycle  = 14 + (2 + 0x24)x24 = 62 
 

algorithm (62) = NF' NU' NF' NU F2 NU' NF NU F2 NF 
 

 
Edge-Center 3-Cycle – Indexing 
 

index_Edge-Center_3-Cycle = k + (j + ix24)x24 (Base 24 Numeral System) 
 
where i, j and k are integer numbers ranging from 0 to 23. These numbers represent 3-cycles of edge-center 
stickers (i → j → k → i). 
 
Index index_Edge-Center_3-Cycle is an integer number ranging from 26 to 13797. 
 
Because stickers i, j and k must belong to 3 different center pieces, index_Edge-Center_3-Cycle can’t take all 
values between these two bounds. 
 
Edge-Center 3-Cycle – Indexing Example 
 

(0 → 1 → 20 → 0) 
 

index_Edge-Center_3-Cycle  = 20 + (1 + 0x24)x24 = 44 
 

algorithm (44) = N3R' F N3U NF' N3U' F' N3U NF N3U' N3R 
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DataBase Example 
 
The computer program uses an internal double numbering system which has to be converted into a lettering 
system for interfacing to the Orbit Cube sticker notation. The conversion table between the two systems is shown 
below: 
 

Conversion Table – Edge-Centers Numbering & Lettering – Orbit Cube 
Cycle (i → j → k → i) or cycle (Sticker1 → Sticker2 → Sticker3 → Sticker1) in orbit '08' 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
D A B C I J K L G H E F N O P M R S T Q W X U V 

 
The table below shows a partial list of algorithms for cycling edge-centers on a 7x7x7 cube. Stickers can be 
cycled either by 3 numbers (computer) or by 3 letters (Orbit Cube). Stickers are cycled in orbit '08' as follows: 
 

cycle (i → j → k → i) or cycle (Sticker1 → Sticker2 → Sticker3 → Sticker1) 
 
As shown in the table, algorithm number 33 will cycle stickers (D A H) and number 55 will cycle stickers (D B L). 
 

DataBase Example – 3-cycles of Edge-Centers – Orbit '08' 
Algorithm Index i/Sticker1 j/Sticker2 k/Sticker3 
N3L N3U NF N3U' F' N3U NF' N3U' F N3L' 26 0/D 1/A 2/B 
N3D N3L NF N3L' F' N3L NF' N3L' F N3D' 27 0/D 1/A 3/C 
F NR' N3F NR F' NR' N3F' NR 28 0/D 1/A 4/I 
N3L' NB N3L F' N3L' NB' N3L F 29 0/D 1/A 5/J 
F NR N3B NR' F' NR N3B' NR' 30 0/D 1/A 6/K 
N3L NF N3L' F' N3L NF' N3L' F 31 0/D 1/A 7/L 
F N3U' NB' N3U F' N3U' NB N3U 32 0/D 1/A 8/G 
NU N3B NU' F' NU N3B' NU' F 33 0/D 1/A 9/H 
F N3U NF' N3U' F' N3U NF N3U' 34 0/D 1/A 10/E 
NU' N3F NU F' NU' N3F' NU F 35 0/D 1/A 11/F 
F NR N3B' NR' F' NR N3B NR' 36 0/D 1/A 12/N 
N3L NF' N3L' F' N3L NF N3L' F 37 0/D 1/A 13/O 
F NR' N3F' NR F' NR' N3F NR 38 0/D 1/A 14/P 
N3L' NB' N3L F' N3L' NB N3L F 39 0/D 1/A 15/M 
F N3U NF N3U' F' N3U NF' N3U' 40 0/D 1/A 16/R 
NU' N3F' NU F' NU' N3F NU F 41 0/D 1/A 17/S 
F N3U' NB N3U F' N3U' NB' N3U 42 0/D 1/A 18/T 
NU N3B' NU' F' NU N3B NU' F 43 0/D 1/A 19/Q 
F N3R2 F' NU2 F N3R2 F' NU2 44 0/D 1/A 20/W 
N3U2 F' NL2 F N3U2 F' NL2 F 45 0/D 1/A 21/X 
F ND2 F' N3L2 F ND2 F' N3L2 46 0/D 1/A 22/U 
NR2 F' N3D2 F NR2 F' N3D2 F 47 0/D 1/A 23/V 

     
N3R N3U NF' N3U' F N3U NF N3U' F' N3R' 49 0/D 2/B 1/A 

     
N3R N3D NF N3D' F' N3D NF' N3D' F N3R' 51 0/D 2/B 3/C 
N3F' F2 ND' N3F' ND F2 ND' N3F ND N3F 52 0/D 2/B 4/I 
NU' R' NU' N3R2 NU R NU' N3R2 NU2 53 0/D 2/B 5/J 
N3B' NU N3B' NU' F2 NU N3B NU' F2 N3B 54 0/D 2/B 6/K 
NU' R NU' N3R2 NU R' NU' N3R2 NU2 55 0/D 2/B 7/L 
NB' F2 N3R' NB' N3R F2 N3R' NB N3R NB 56 0/D 2/B 8/G 
N3L' U' N3L' ND2 N3L U N3L' ND2 N3L2 57 0/D 2/B 9/H 
NF' N3L NF' N3L' F2 N3L NF N3L' F2 NF 58 0/D 2/B 10/E 
N3L' U N3L' ND2 N3L U' N3L' ND2 N3L2 59 0/D 2/B 11/F 
N3B' F2 ND N3B' ND' F2 ND N3B ND' N3B 60 0/D 2/B 12/N 
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Part IV 
 

Algorithm Picker 
 

Algorithm Picker 7 – Excel/VBA UserForm – 7x7x7 Cube 

 
'Cycles' – (A F K P U B G L Q V C H M R W D I) 17-Cycle 

 
'DataBase Query' – Orbit 05 – 17-Cycle (75 Moves) 
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Algorithm Picker 7 – Example 1 
 

Algorithm Picker 7 – Example 1 – UserForm – 7x7x7 Cube 

 
5-Cycle of Edges (A → C → G → H → E → A) – Orbit 02 

 
F2 NR' F' L F NR F' L' F D NF D' F2 D NF' D' (16 moves) 
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Algorithm Picker 7 – Example 2 
 

Algorithm Picker 7 – Example 2 – UserForm – 7x7x7 Cube 

 
2 2-Cycles of Centers (A → H → A) (N → R → N) – Orbit 05 

 
NF NU NF U NF' NU' NF U' NF2 NL' NU' NL' U' NL NU NL' U NL2 (18 moves) 
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Algorithm Picker 7 – Example 3 
 

Algorithm Picker 7 – Example 3 – UserForm – 7x7x7 Cube 

 
5-Cycle of Edges (A → C → G → H → E → A) – Orbit 02 

 
F2 NR' F' L F NR F' L' F D NF D' F2 D NF' D' (16 moves) 
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Algorithm Picker 7 – Example 4 
 

Algorithm Picker 7 – Example 4 – UserForm – 7x7x7 Cube 

 
9-Cycle of Edges (A → B → C → D → E → F → G → H → J) – Orbit 06 

 
R D R' NU' R D' R' NU R' U' R' ND R U R' ND' R2 F' NU2 F U' F' NU2 F U' F' NU2 F U' F' NU2 F U' (33 moves) 
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Algorithm Picker 7 – Example 5 
 

Algorithm Picker 7 – Example 5 – UserForm – 7x7x7 Cube 

 
11-Cycle of Edges (A → B → C → D → E → F → G → H → I → J → K) – Orbit 01 

 
F N3D' F' U F N3D F' U' F D' N3B2 D F' D' N3B2 D N3B R N3U2 R' U2 R N3U2 R' U2 N3B2 R' F R N3B R' F' R 
F N3R2 F' R' F N3R2 F' R (41 moves) 
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Algorithm Picker 7 – Example 6 
 

Algorithm Picker 7 – Example 6 – UserForm – 7x7x7 Cube 

 
1 4-Cycle + 1 2-Cycle of Edges (A  B  C  D) (E F) – Orbit 01 

 
D L N3F L' F' L N3F' L' F N3F D' F D N3F' D' F2 R' F N3L F' R F N3L' (23 moves) 
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Algorithm Picker 7 – Example 7 
 

Algorithm Picker 7 – Example 7 – UserForm – 7x7x7 Cube 

 
23-Cycle of Corner-Centers (A F K P U B G L Q V C H M R W D I N S X E J O) – Orbit 05 

 
NU2 NL' NU L NU' NL NU L' NU2 NB' U NB NU NB' U' NB NU2 ND' NR' ND L' ND' NR ND L NR B' NR NB NR' B 
NR NB' NR2 NB' D2 NB L2 NB' NL2 NB L2 NB' NL2 D2 U NB' NU' NB U' NB' NU NB2 L' NB' NU NL NU' L' NU 
NL' NU' L NB L R NR2 B2 NR NB NR' B2 NR NB' NR SR' NF' NL NU' NL' U2 NL NU NL' U2 NF L' D NR D NR' 
ND' NR D' NR' ND D' ND NL' U2 NL ND' NL' U2 NL (105 moves) 
 

http://www.mementoslangues.fr/�


 

Orbit Cube   47/68   http://www.mementoslangues.fr/  Cube Solver 

Annex 
 

Cube Numbering System 
 
Sticker Numbering – 7x7x7 Cube 
 
Stickers on a 7x7x7 cube are numbered in rows from 0 up to 293, beginning on face F, top left and ending on 
face B, bottom right, following sequence F R U L D B. Stickers can also be numbered per orbit from 0 up to 23. 
 

       98 99 100 101 102 103 104        

       105 106 107 108 109 110 111        

       112 113 114 115 116 117 118        

       119 120 121 122 123 124 125        

       126 127 128 129 130 131 132        

       133 134 135 136 137 138 139        

       140 141 142 143 144 145 146        

147 148 149 150 151 152 153 0 1 2 3 4 5 6 49 50 51 52 53 54 55 

154 155 156 157 158 159 160 7 8 9 10 11 12 13 56 57 58 59 60 61 62 

161 162 163 164 165 166 167 14 15 16 17 18 19 20 63 64 65 66 67 68 69 

168 169 170 171 172 173 174 21 22 23 24 25 26 27 70 71 72 73 74 75 76 

175 176 177 178 179 180 181 28 29 30 31 32 33 34 77 78 79 80 81 82 83 

182 183 184 185 186 187 188 35 36 37 38 39 40 41 84 85 86 87 88 89 90 

189 190 191 192 193 194 195 42 43 44 45 46 47 48 91 92 93 94 95 96 97 

       196 197 198 199 200 201 202 245 246 247 248 249 250 251 

       203 204 205 206 207 208 209 252 253 254 255 256 257 258 

       210 211 212 213 214 215 216 259 260 261 262 263 264 265 

       217 218 219 220 221 222 223 266 267 268 269 270 271 272 

       224 225 226 227 228 229 230 273 274 275 276 277 278 279 

       231 232 233 234 235 236 237 280 281 282 283 284 285 286 

       238 239 240 241 242 243 244 287 288 289 290 291 292 293 
 

 Up   

Left Front Right Back 

 Down Back  
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True Center Orbit 
 
The 6 numbered stickers of the orbit of true centers of a 7x7x7 cube are shown on the texture below: 
 

                     

                     

                     

          2           

                     

                     

                     

                     

                     

                     

   3       0       1    

                     

                     

                     

                     

                     

                     

          4       5    
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Corner Orbit – Stickers 
 
The 24 numbered stickers of the corner orbit of a 7x7x7 cube are shown on the texture below: 
 

       16      14        

                     

                     

                     

                     

                     

       2      4        

17      1 0      3 5      13 

                     

                     

                     

                     

                     

19      11 9      6 7      23 

       10      8 12      15 

                     

                     

                     

                     

                     

       20      22 21      18 
 

Reference Cube 
Corner 0 1 2 3 4 5 6 7 
Stickers (0, 1, 2) (3, 4, 5) (6, 7, 8) (9, 10, 11) (12, 13, 14) (15, 16, 17) (18, 19, 20) (21, 22, 23) 

Orbit Cube 
Stickers (D, O, F) (A, E, I) (B, L, S) (C, R, P) (W, J, H) (X, G, N) (U, M, Q) (V, T, K) 

 
Corner stickers are numbered from 0 to 23 whereas corner pieces are numbered from 0 to 7. 
 
Sticker numbers have been selected such that a cyclic permutation of numbers in a group of 3 will always twist a 
corner in a clockwise direction, so that sticker permutation (0 → 1 → 2 → 0) will twist corner 0 clockwise (CW) 
whereas sticker permutation (0 → 2 → 1 → 0) will twist it counterclockwise (CCW). 
 
For a group of 3 stickers (s0, s1, s2) located on a same corner piece, the corner number can be obtained from: 
 

corner number = Integer(s0 / 3), or Integer(s1 / 3), or Integer(s2 / 3) 
 
Given a corner sticker number s0, the 2 other corner sticker numbers can be obtained from: 
 

s0 = 3 * Integer (s0 / 3) + (s0 + 0) Modulo 3 
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s1 = 3 * Integer (s0 / 3) + (s0 + 1) Modulo 3 
s2 = 3 * Integer (s0 / 3) + (s0 + 2) Modulo 3 
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Corner Twists 
 
There are four permuted corners per face turn. Quarter-turns turns F, F', B, B' and all half-turns F2, R2, U2, L2, 
D2, B2 do not change the twist of any of the four permuted corners, whereas quarter-turns R, R', U, U', L, L', D, 
D' change the twist of only half of the permuted corners. 
 
To obtain the new twist of a corner that has been moved to a new position, simply add the delta twist value 
indicated in the Table of Corner Twists to the old corner twist: 
 

newTwist = (oldTwist + deltaTwist) Modulo 3 
 

For example, by applying move R to the right face, the new twist of the corner that has been moved from old 
position 4 to new position 7 is given by: 

 
deltaTwist = +1 

newTwist(7) = (oldTwist(4) + 1) Modulo 3 
 
If this corner located at position 7 is now moved back to position 4 by move R' , then the 2 delta twists will cancel 
out Modulo 3: 

 
deltaTwist = +2 

newTwist(4) = (oldTwist(7) + 2) Modulo 3 
newTwist(4) = ((oldTwist(4) + 1) + 2) Modulo 3 
newTwist(4) = (oldTwist(4) + (1 + 2)) Modulo 3 

newTwist(4) = (oldTwist(4) + 3) Modulo 3 
newTwist(4) = oldTwist(4) 

 
The table shows that any legal face move will always keep the sum of *all* corner twists equal to zero Modulo 3. 
 

Table of Corner Twists 
Face Move F 

old corner position 0 1 2 3 4 5 6 7 
new corner position 1 2 3 0 4 5 6 7 

deltaTwist +0 +0 +0 +0 +0 +0 +0 +0 
Face Move F2 

old corner position 0 1 2 3 4 5 6 7 
new corner position 2 3 0 1 4 5 6 7 

deltaTwist +0 +0 +0 +0 +0 +0 +0 +0 
Face Move F' 

old corner position 0 1 2 3 4 5 6 7 
new corner position 3 0 1 2 4 5 6 7 

deltaTwist +0 +0 +0 +0 +0 +0 +0 +0 
 

Face Move R 
old corner position 0 1 2 3 4 5 6 7 
new corner position 0 4 1 3 7 5 6 2 

deltaTwist +0 +2 +1 +0 +1 +0 +0 +2 
Face Move R2 

old corner position 0 1 2 3 4 5 6 7 
new corner position 0 7 4 3 2 5 6 1 

deltaTwist +0 +0 +0 +0 +0 +0 +0 +0 
Face Move R' 

old corner position 0 1 2 3 4 5 6 7 
new corner position 0 2 7 3 1 5 6 4 

deltaTwist +0 +2 +1 +0 +1 +0 +0 +2 
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Face Move U 
old corner position 0 1 2 3 4 5 6 7 
new corner position 5 0 2 3 1 4 6 7 

deltaTwist +2 +1 +0 +0 +2 +1 +0 +0 
Face Move U2 

old corner position 0 1 2 3 4 5 6 7 
new corner position 4 5 2 3 0 1 6 7 

deltaTwist +0 +0 +0 +0 +0 +0 +0 +0 
Face Move U' 

old corner position 0 1 2 3 4 5 6 7 
new corner position 1 4 2 3 5 0 6 7 

deltaTwist +1 +2 +0 +0 +2 +1 +0 +0 
 

Face Move L 
old corner position 0 1 2 3 4 5 6 7 
new corner position 3 1 2 6 4 0 5 7 

deltaTwist +1 +0 +0 +2 +0 +2 +1 +0 
Face Move L2 

old corner position 0 1 2 3 4 5 6 7 
new corner position 6 1 2 5 4 3 0 7 

deltaTwist +0 +0 +0 +0 +0 +0 +0 +0 
Face Move L' 

old corner position 0 1 2 3 4 5 6 7 
new corner position 5 1 2 0 4 6 3 7 

deltaTwist +1 +0 +0 +2 +0 +2 +1 +0 
 

Face Move D 
old corner position 0 1 2 3 4 5 6 7 
new corner position 0 1 7 2 4 5 3 6 

deltaTwist +0 +0 +2 +1 +0 +0 +2 +1 
Face Move D2 

old corner position 0 1 2 3 4 5 6 7 
new corner position 0 1 6 7 4 5 2 3 

deltaTwist +0 +0 +0 +0 +0 +0 +0 +0 
Face Move D' 

old corner position 0 1 2 3 4 5 6 7 
new corner position 0 1 3 6 4 5 7 2 

deltaTwist +0 +0 +2 +1 +0 +0 +2 +1 
 

Face Move B 
old corner position 0 1 2 3 4 5 6 7 
new corner position 0 1 2 3 5 6 7 4 

deltaTwist +0 +0 +0 +0 +0 +0 +0 +0 
Face Move B2 

old corner position 0 1 2 3 4 5 6 7 
new corner position 0 1 2 3 6 7 4 5 

deltaTwist +0 +0 +0 +0 +0 +0 +0 +0 
Face Move B' 

old corner position 0 1 2 3 4 5 6 7 
new corner position 0 1 2 3 7 4 5 6 

deltaTwist +0 +0 +0 +0 +0 +0 +0 +0 
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Corner Orbit – Pieces 
 
The 8 numbered pieces of the corner orbit of a 7x7x7 cube are shown on the texture below: 
 

       5      4        

                     

                     

                     

                     

                     

       0      1        

5      0 0      1 1      4 

                     

                     

                     

                     

                     

6      3 3      2 2      7 

       3      2 4      5 

                     

                     

                     

                     

                     

       6      7 7      6 
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Midge Orbit – Stickers 
 
The 24 numbered stickers of the midge orbit of a 7x7x7 cube are shown on the texture below: 
 

          11           

                     

                     

       6      1        

                     

                     

          8           

   7       9       0    

                     

                     

21      18 19      16 17      22 

                     

                     

   4       14       3    

          15       10    

                     

                     

       5      2 23      20 

                     

                     

          12       13    
 

Reference Cube 
Midge 0 1 2 3 4 5 6 7 8 9 10 11 

Stickers (0, 1) (2, 3) (4, 5) (6, 7) (8, 9) (10, 11) (12, 13) (14, 15) (16, 17) (18, 19) (20, 21) (22, 23) 
Orbit Cube 

Stickers (I, H) (S, K) (P, Q) (F, N) (E, D) (W, G) (T, U) (B, R) (A, L) (O, C) (X, M) (J, V) 
 
Midge stickers are numbered from 0 to 23 whereas midge pieces are numbered from 0 to 11. 
 
For a pair of 2 stickers (s0, s1) located on a same midge piece, the midge piece number can be obtained as: 
 

midge piece number = Integer(s0 / 2) or Integer(s1 / 2) 
 
Given a midge sticker number s0, the number s1 of the sticker located on the other side can be obtained from: 
 

s0 = 2 * Integer(s0 / 2) + (s0 + 0) Modulo 2 
s1 = 2 * Integer(s0 / 2) + (s0 + 1) Modulo 2 
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Given a midge sticker number s that has moved to sticker position p, the midge flip can be obtained from: 
 

1- Compute S = s - 2 * Integer (s / 2) 
2- Compute P = p - 2 * Integer (p / 2) 
3- Compare S and P and compute midge flip from: 

 
if (P = S) then Flip = 0, else Flip = 1 
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Midge Flips 
 
There are four permuted midges per face turn. Half-turns F2, R2, U2, L2, D2, B2 toggle the flip of each of the 
four permuted midges, whereas quarter-turns F, F', R, R', U, U', L, L', D, D', B, B' toggle the flip of only half of the 
permuted midges. 
 
To obtain the new flip of a midge that has been moved to a new position, simply add the delta flip value indicated 
in the Table of Midge Flips to the old midge flip: 
 

newFlip = (oldFlip + deltaFlip) Modulo 2 
 

For example, by applying move R to the right face, the new flip of the midge that has been moved from old 
position 8 to new position 0 is given by: 

 
deltaFlip = +1 

newFlip(0) = (oldFlip(8) + 1) Modulo 2 
 
If this midge located at position 0 is now moved back to position 8 by move R' , then the 2 delta flips will cancel 
out Modulo 2: 

 
deltaFlip = +1 

newFlip(8) = (oldFlip(0) + 1) Modulo 2 
newFlip(8) = ((oldFlip(8) + 1) + 1) Modulo 2 
newFlip(8) = (oldFlip(8) + (1 + 1)) Modulo 2 

newFlip(8) = (oldFlip(8) + 2) Modulo 2 
newFlip(8) = oldFlip(8) 

 
The table shows that any legal face move will always keep the sum of *all* midge flips equal to zero Modulo 2. 
 

Table of Midge Flips 
Face Move F 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 1 2 3 8 5 6 9 7 4 10 11 

deltaFlip +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +0 
Face Move F2 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 1 2 3 7 5 6 4 9 8 10 11 

deltaFlip +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 
Face Move F' 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 1 2 3 9 5 6 8 4 7 10 11 

deltaFlip +0 +0 +0 +0 +0 +0 +0 +0 +1 +1 +0 +0 
 

Face Move R 
old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 11 8 2 3 4 5 6 7 0 9 10 1 

deltaFlip +0 +0 +0 +0 +0 +0 +0 +0 +1 +0 +0 +1 
Face Move R2 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 1 0 2 3 4 5 6 7 11 9 10 8 

deltaFlip +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 
Face Move R' 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 8 11 2 3 4 5 6 7 1 9 10 0 

deltaFlip +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 
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Face Move U 
old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 4 1 2 5 3 0 6 7 8 9 10 11 

deltaFlip +1 +0 +0 +1 +0 +0 +0 +0 +0 +0 +0 +0 
Face Move U2 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 3 1 2 0 5 4 6 7 8 9 10 11 

deltaFlip +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 
Face Move U' 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 5 1 2 4 0 3 6 7 8 9 10 11 

deltaFlip +0 +0 +0 +0 +1 +1 +0 +0 +0 +0 +0 +0 
 
 

Face Move L 
old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 1 10 9 4 5 6 7 8 2 3 11 

deltaFlip +0 +0 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 
Face Move L2 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 1 3 2 4 5 6 7 8 10 9 11 

deltaFlip +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 
Face Move L' 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 1 9 10 4 5 6 7 8 3 2 11 

deltaFlip +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 +1 +0 
 
 

Face Move D 
old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 6 7 3 4 5 2 1 8 9 10 11 

deltaFlip +0 +0 +0 +0 +0 +0 +1 +1 +0 +0 +0 +0 
Face Move D2 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 2 1 3 4 5 7 6 8 9 10 11 

deltaFlip +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 
Face Move D' 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 7 6 3 4 5 1 2 8 9 10 11 

deltaFlip +0 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 
 
 

Face Move B 
old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 1 2 3 4 10 11 7 8 9 6 5 

deltaFlip +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 +1 
Face Move B2 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 1 2 3 4 6 5 7 8 9 11 10 

deltaFlip +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 
Face Move B' 

old midge position 0 1 2 3 4 5 6 7 8 9 10 11 
new midge position 0 1 2 3 4 11 10 7 8 9 5 6 

deltaFlip +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 +1 
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Midge Orbit – Pieces 
 
The 12 numbered pieces of the midge orbit of a 7x7x7 cube are shown on the texture below: 
 

          5           

                     

                     

       3      0        

                     

                     

          4           

   3       4       0    

                     

                     

10      9 9      8 8      11 

                     

                     

   2       7       1    

          7       5    

                     

                     

       2      1 11      10 

                     

                     

          6       6    
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Edge Orbit 1 
 
The 24 numbered stickers of the 1st edge orbit of a 7x7x7 cube are shown on the texture below (one edge side): 
 

        8             

             9        

                     

                     

                     

       11              

            10         

 12       0       4      

      13       1       5 

                     

                     

                     

15       3       7       

     14       2       6  

        16       20      

             17       21 

                     

                     

                     

       19       23       

            18       22  
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The numbered stickers of the 1st edge orbit of a 7x7x7 cube are shown on the texture below (two edge sides). 
 

        8    9'         

       8'      9        

                     

                     

                     

       11      10'        

        11'    10         

 12    13'   0    1'   4    5'  

12'      13 0'      1 4'      5 

                     

                     

                     

15      14' 3      2' 7      6' 

 15'    14   3'    2   7'    6  

        16    17'   20    21'  

       16'      17 20'      21 

                     

                     

                     

       19      18' 23      22' 

        19'    18   23'    22  
 
It can be seen that stickers of the two sides of an edge are paired. If an algorithm exists for cycling stickers of a 
side of an edge, then the same algorithm will also cycle stickers of the other side. 
 

Edge Orbit 1 – Paired Stickers 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

11' 4' 17' 14' 10' 20' 18' 2' 21' 5' 1' 13' 8' 0' 16' 22' 3' 7' 23' 15' 9' 12' 19' 6' 
 

0' 1' 2' 3' 4' 5' 6' 7' 8' 9' 10' 11' 12' 13' 14' 15' 16' 17' 18' 19' 20' 21' 22' 23' 
13 10 7 16 1 9 23 17 12 20 4 0 21 11 3 19 14 2 6 22 5 8 15 18 
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Edge Orbit 2 
 
The 24 numbered stickers of the 2nd edge orbit of a 7x7x7 cube are shown on the texture below (one edge side): 
 

         8            

                     

             9        

                     

       11              

                     

           10          

  12       0       4     

                     

      13       1       5 

                     

15       3       7       

                     

    14       2       6   

         16       20     

                     

             17       21 

                     

       19       23       

                     

           18       22   
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The numbered stickers of the 2nd edge orbit of a 7x7x7 cube are shown on the texture below (two edge sides): 
 

         8  9'          

                     

       8'      9        

                     

       11      10'        

                     

         11'  10          

  12  13'     0  1'     4  5'   

                     

12'      13 0'      1 4'      5 

                     

15      14' 3      2' 7      6' 

                     

  15'  14     3'  2     7'  6   

         16  17'     20  21'   

                     

       16'      17 20'      21 

                     

       19      18' 23      22' 

                     

         19'  18     23'  22   
 
It can be seen that stickers of the two sides of an edge are paired. If an algorithm exists for cycling stickers of a 
side of an edge, then the same algorithm will also cycle stickers of the other side. 
 

Edge Orbit 2 – Paired Stickers 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

11' 4' 17' 14' 10' 20' 18' 2' 21' 5' 1' 13' 8' 0' 16' 22' 3' 7' 23' 15' 9' 12' 19' 6' 
 

0' 1' 2' 3' 4' 5' 6' 7' 8' 9' 10' 11' 12' 13' 14' 15' 16' 17' 18' 19' 20' 21' 22' 23' 
13 10 7 16 1 9 23 17 12 20 4 0 21 11 3 19 14 2 6 22 5 8 15 18 
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Corner-Center Orbit 1 
 
The 24 numbered stickers of the 1st corner-center orbit of a 7x7x7 cube are shown on the texture below: 
 

                     

        8    9         

                     

                     

                     

        11    10         

                     

                     

 12    13   0    1   4    5  

                     

                     

                     

 15    14   3    2   7    6  

                     

                     

        16    17   20    21  

                     

                     

                     

        19    18   23    22  
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Corner-Center Orbit 2 
 
The 24 numbered stickers of the 2nd corner-center orbit of a 7x7x7 cube are shown on the texture below: 
 

                     

                     

         8  9          

                     

         11  10          

                     

                     

                     

                     

  12  13     0  1     4  5   

                     

  15  14     3  2     7  6   

                     

                     

                     

                     

         16  17     20  21   

                     

         19  18     23  22   
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Midge-Center Orbit 1 
 
The 24 numbered stickers of the 1st midge-center orbit of a 7x7x7 cube are shown on the texture below: 
 

                     

          8           

                     

        11    9         

                     

          10           

                     

                     

   12       0       4    

                     

 15    13   3    1   7    5  

                     

   14       2       6    

                     

                     

          16       20    

                     

        19    17   23    21  

                     

          18       22    
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Midge-Center Orbit 2 
 
The 24 numbered stickers of the 2nd midge-center orbit of a 7x7x7 cube are shown on the texture below: 
 

                     

                     

          8           

         11  9          

          10           

                     

                     

                     

                     

   12       0       4    

  15  13     3  1     7  5   

   14       2       6    

                     

                     

                     

                     

          16       20    

         19  17     23  21   

          18       22    
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Edge-Center Orbit 1 
 
The 24 numbered stickers of the 1st edge-center orbit of a 7x7x7 cube are shown on the texture below: 
 

                     

         8            

            9         

                     

        11             

           10          

                     

                     

  12       0       4     

     13       1       5  

                     

 15       3       7      

    14       2       6   

                     

                     

         16       20     

            17       21  

                     

        19       23      

           18       22   
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Edge-Center Orbit 2 
 
The 24 numbered stickers of the 2nd edge-center orbit of a 7x7x7 cube are shown on the texture below: 
 

                     

           9          

        8             

                     

            10         

         11            

                     

                     

    13       1       5   

 12       0       4      

                     

     14       2       6  

  15       3       7     

                     

                     

           17       21   

        16       20      

                     

            18       22  

         19       23     
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